B. Kolya and Tanya
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Kolya loves putting gnomes at the circle table and giving them coins, and Tanya loves studying triplets of gnomes, sitting in the vertexes of an equilateral triangle.

More formally, there are 3n gnomes sitting in a circle. Each gnome can have from 1 to 3 coins. Let's number the places in the order they occur in the circle by numbers from 0 to 3n - 1, let the gnome sitting on the i-th place have ai coins. If there is an integer i (0 ≤ i < n) such that ai + ai + n + ai + 2n ≠ 6, then Tanya is satisfied.

Count the number of ways to choose ai so that Tanya is satisfied. As there can be many ways of distributing coins, print the remainder of this number modulo 109 + 7. Two ways, a and b, are considered distinct if there is index i (0 ≤ i < 3n), such that ai ≠ bi (that is, some gnome got different number of coins in these two ways).

Input

A single line contains number n (1 ≤ n ≤ 105) — the number of the gnomes divided by three.

Output

Print a single number — the remainder of the number of variants of distributing coins that satisfy Tanya modulo 109 + 7.

Examples
Input
1
Output
20
Input
2
Output
680
Note

20 ways for n = 1 (gnome with index 0 sits on the top of the triangle, gnome 1 on the right vertex, gnome 2 on the left vertex):

题意: 输入一个n      3*n个位置 0~3n-1 每个位置的k等于(1,2,3)

ai + ai + n + ai + 2n ≠ 6 则算做一种情况  问共有多少情况 % 1000000000+9

题解:   计算式子

ans1=3^3n%mod

ans2=7^n%mod

( ans1-ans2)%mod

若 ans1<ans2

则输出(ans1+mod-ans2)%mod

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<stack>
#include<cmath>
#define ll __int64
#define pi acos(-1.0)
#define mod 1000000007
using namespace std;
ll n;
ll ans1,ans2;
ll quickmod(ll a,ll b)
{
ll sum=;
while(b)
{
if(b&)
sum=(sum*a)%mod;
b>>=;
a=(a*a)%mod;
}
return sum;
}
int main()
{
scanf("%I64d",&n);
ans1=quickmod(,*n)%mod;
ans2=quickmod(,n)%mod;
if(ans1>=ans2)
printf("%I64d\n",(ans1-ans2)%mod);
else
printf("%I64d\n",(ans1+mod-ans2)%mod);
return ;
}

Codeforces Round #324 (Div. 2) B的更多相关文章

  1. Codeforces Round #324 (Div. 2)解题报告

    ---恢复内容开始--- Codeforces Round #324 (Div. 2) Problem A 题目大意:给二个数n.t,求一个n位数能够被t整除,存在多组解时输出任意一组,不存在时输出“ ...

  2. Codeforces Round #324 (Div. 2) C (二分)

    题目链接:http://codeforces.com/contest/734/problem/C 题意: 玩一个游戏,一开始升一级需要t秒时间,现在有a, b两种魔法,两种魔法分别有m1, m2种效果 ...

  3. Codeforces Round #324 (Div. 2) E. Anton and Ira 贪心

    E. Anton and Ira Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/584/probl ...

  4. Codeforces Round #324 (Div. 2) D. Dima and Lisa 哥德巴赫猜想

    D. Dima and Lisa Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/584/probl ...

  5. Codeforces Round #324 (Div. 2) C. Marina and Vasya 贪心

    C. Marina and Vasya Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/584/pr ...

  6. Codeforces Round #324 (Div. 2) B. Kolya and Tanya 快速幂

    B. Kolya and Tanya Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/584/pro ...

  7. Codeforces Round #324 (Div. 2) A. Olesya and Rodion 水题

    A. Olesya and Rodion Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/584/p ...

  8. Codeforces Round #324 (Div. 2) (哥德巴赫猜想)

    题目:http://codeforces.com/problemset/problem/584/D 思路: 关于偶数的哥德巴赫猜想:任一大于2的偶数都可写成两个素数之和. 关于奇数的哥德巴赫猜想:任一 ...

  9. Codeforces Round #324 (Div. 2) Dima and Lisa 哥德巴赫猜想

    原题链接:http://codeforces.com/contest/584/problem/D 题意: 给你一个奇数,让你寻找三个以内素数,使得和为这个奇数. 题解: 这题嘛...瞎比搞搞就好,首先 ...

  10. Codeforces Round #324 (Div. 2) Marina and Vasya 乱搞推理

    原题链接:http://codeforces.com/contest/584/problem/C 题意: 定义$f(s1,s2)$为$s1,s2$不同的字母的个数.现在让你构造一个串$s3$,使得$f ...

随机推荐

  1. 【Ecshop】商品数据采集扩展

    一个自用的Ecshop商品数据采集程序 ->到此下载

  2. Element-ui组件--pagination分页

    一般写后台系统都会有很多的列表,有列表就相应的要用到分页,根据项目中写的几个分页写一下我对分页的理解,就当是学习笔记了. 这是Element-ui提供的完整的例子 <template>  ...

  3. Linux入门篇(五)——Shell(一)

    这一系列的Linux入门都是本人在<鸟哥的Linux私房菜>的基础上总结的基本内容,主要是记录下自己的学习过程,也方便大家简要的了解 Linux Distribution是Ubuntu而不 ...

  4. Teaching Is a Fruitful Way to Learn【教学是一种有效的学习方式】

    Teaching Is a Fruitful Way to Learn For thousands of years, people have known that the best way to u ...

  5. VIM安装YCM插件

    折腾了两天,终于好了 1.配置VIM (1)下载相关插件 sudo apt-get install git sudo apt-get install build-essential cmake sud ...

  6. 笔记-python-调试

    笔记-python-调试 一般在pycharm下调试或使用log查看输出日志,有时小程序不想这么麻烦,也有一些方便使用的调试方式可以使用. 1.      idle调试 1.打开Python shel ...

  7. linux c 调用子文件函数

    今天在学习初级linux c的时候遇到了如下问题:通过主函数调用同路径下的子文件函数调用失败.博主是这样一一解决的: 首先:hello.c: hello.c: #include<bool.c&g ...

  8. gcc常用命令

    1简介 2简单编译 2.1预处理 2.2编译为汇编代码(Compilation) 2.3汇编(Assembly) 2.4连接(Linking) 3多个程序文件的编译 4检错 5库文件连接 5.1编译成 ...

  9. 3,Linux入门

    操作系统的分类 Windows系列操作系统,Unix类操作系统,Linux类操作系统,Mac操作系统 提问:为什么要去学习Linux? 同学甲可能要问,超哥你介绍了这么多有关Linux的知识,但我还是 ...

  10. 常用正则表达式 -- 费元星 java大神

    正则表达式用于字符串处理.表单验证等场合,实用高效.现将一些常用的表达式收集于此,以备不时之需. 匹配中文字符的正则表达式: [\u4e00-\u9fa5]评注:匹配中文还真是个头疼的事,有了这个表达 ...