题目戳这里

一句话题意

给你一个a×b的矩形,求一个n×n的子矩阵,矩阵里面的最大值和最小值之差最小。

Solution

这个题目许多大佬都是单调队列,但是我不是很会,只好用了比较傻逼的方法:

首先我们预处理出每个点往后走N步的最大值和最小值。复杂度的话是\(O(a*b*n)\),然后枚举每一个点,往下走N步并比较最大值和最小值,就得到一个N×N的矩阵中的最大值和最小值,然后更新答案即可。

复杂度大概是 1e8,差不多正好卡过去。洛谷评测机是真的快,开氧气优化居然只要200ms

Coding

#include<bits/stdc++.h>
using namespace std;
const int N = 2005;
int n,a,b,Map[N][N],Max[N][N],Min[N][N],ans=1e9+5;
inline int read()
{
int X=0,w=1; char ch=0;
while(ch<'0' || ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0' && ch<='9') X=(X<<3)+(X<<1)+ch-'0',ch=getchar();
return X*w;
}
int main()
{
cin>>a>>b>>n;
for(int i=1;i<=a;++i)
for(int j=1;j<=b;++j)
Map[i][j]=read();
for(int i=1;i<=a;++i)
for(int j=1;j<=b-n+1;++j)
{
int Mx=0,Mi=1e9+5;
for(int k=0;k<n;++k)
{
Mx=max(Mx,Map[i][j+k]);
Mi=min(Mi,Map[i][j+k]);
}
Max[i][j]=Mx;
Min[i][j]=Mi;
}
for(int i=1;i<=a-n+1;++i)
for(int j=1;j<=b-n+1;++j)
{
int Mx=0,Mi=1e9+5;
for(int k=i;k<i+n;++k)
{
Mx=max(Mx,Max[k][j]);
Mi=min(Mi,Min[k][j]);
}
ans=min(Mx-Mi,ans);
}
cout<<ans;
return 0;
}

洛谷 2216 [HAOI2007]理想的正方形的更多相关文章

  1. BZOJ1047或洛谷2216 [HAOI2007]理想的正方形

    BZOJ原题链接 洛谷原题链接 显然可以用数据结构或\(ST\)表或单调队列来维护最值. 这里采用单调队列来维护. 先用单调队列维护每一行的最大值和最小值,区间长为正方形长度. 再用单调队列维护之前维 ...

  2. 洛谷 P2216 [HAOI2007]理想的正方形

    P2216 [HAOI2007]理想的正方形 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一 ...

  3. 洛谷P2216: [HAOI2007]理想的正方形 单调队列优化DP

    洛谷P2216 )逼着自己写DP 题意: 给定一个带有数字的矩阵,找出一个大小为n*n的矩阵,这个矩阵中最大值减最小值最小. 思路: 先处理出每一行每个格子到前面n个格子中的最大值和最小值.然后对每一 ...

  4. 洛谷P2216 HAOI2007 理想的正方形 (单调队列)

    题目就是要求在n*m的矩形中找出一个k*k的正方形(理想正方形),使得这个正方形内最值之差最小(就是要维护最大值和最小值),显然我们可以用单调队列维护. 但是二维平面上单调队列怎么用? 我们先对行处理 ...

  5. 【DP】【单调队列】洛谷 P2216 [HAOI2007]理想的正方形 题解

        算是单调队列的复习吧,不是很难 题目描述 有一个$a\times b$的整数组成的矩阵,现请你从中找出一个$n\times n$的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 ...

  6. 洛谷 P2216 [HAOI2007]理想的正方形 || 二维RMQ的单调队列

    题目 这个题的算法核心就是求出以i,j为左上角,边长为n的矩阵中最小值和最大值.最小和最大值的求法类似. 单调队列做法: 以最小值为例: q1[i][j]表示第i行上,从j列开始的n列的最小值.$q1 ...

  7. [洛谷P2216][HAOI2007]理想的正方形

    题目大意:有一个$a\times b$的矩阵,求一个$n\times n$的矩阵,使该区域中的极差最小. 题解:二维$ST$表,每一个点试一下是不是左上角就行了 卡点:1.用了一份考试时候写的二维$S ...

  8. [Luogu 2216] [HAOI2007]理想的正方形

    [Luogu 2216] [HAOI2007]理想的正方形 题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输 ...

  9. 洛谷 P2216 [HAOI2007]理想正方形

    洛谷 巨说这是一道单调队列好题,但是我并不是用单调队列做的诶. 如果往最暴力的方向去想,肯定是\(n^3\)的\(dp\)了. \(f[i][j][k]\)代表当前正方形的左上角定点是\((i,j)\ ...

随机推荐

  1. ant 报 make sure you have it in your classpath

    检查build.xml的配置 build.xml配置出错,导致的这个问题

  2. Angular 学习笔记——ng-repeat&filter

    <!DOCTYPE html> <html lang="en" ng-app="myApp"> <head> <met ...

  3. 倍福TwinCAT(贝福Beckhoff)基础教程5.1 TwinCAT-1 获取和设置系统时间

    使用功能块NT_GetTime,NETID填写两个单引号表示本机,START就是一个触发信号,一般的功能块都需要一个上升沿触发执行,最后的输出类型都是让系统自己决定,然后统一把这些变量放到全局变量中( ...

  4. 从程序员到asp.net架构师转变[转]

    微软的DotNet开发绝对是属于那种入门容易提高难的技术.而要能够成为DotNet架构师没有三年或更长时间的编码积累基本上是不可能的.特别是在大型软件项目中,架构师是项目核心成员,承上启下,因此 RU ...

  5. Fog of War小调研

    看起来LOL和DOTA2都用的是格子来做的战争阴影,并且是用PP做的.

  6. Android API Guides---RenderScript

    RenderScript RenderScript是在Android上的高性能执行计算密集型任务的框架. RenderScript主要面向与数据并行计算的使用.尽管串行计算密集型工作负载能够受益.该R ...

  7. Servlet的API(一)

    Servlet的API有很多,这里只谈谈两个Servlet对象:ServletConfig对象和ServletContext对象. 1. ServletConfig对象 在Servlet的配置文件中, ...

  8. bzoj 2458: [BeiJing2011]最小三角形 题解

    [前言]话说好久没有写题解了.到暑假了反而忙.o(╯□╰)o [原题] 2458: [BeiJing2011]最小三角形 Time Limit: 10 Sec  Memory Limit: 128 M ...

  9. cache和内存

    CPU与内存 北桥:主桥,主要用来处理高速信号,负责与处理器的联系:CPU通过FSB前端总线来访问内存控制器. 南桥:IO桥,负责IO总线之间的通信,比如PCI总线.SATA.USB等,可以连接光驱. ...

  10. Win7 64bit+Anaconda(3-5.0.1,Python3.6)+Pycharm(community-2017.3.3)+OpenCV(python‑3.4.0‑cp36‑cp36m)(转载)

    Anaconda(3-5.0.1,Python3.6)下载链接:https://pan.baidu.com/s/1bqFwLMB 密码:37ih Pycharm(community-2017.3.3) ...