『cs231n』作业2选讲_通过代码理解优化器
1)、Adagrad
一种自适应学习率算法,实现代码如下:
cache += dx**2
x += - learning_rate * dx / (np.sqrt(cache) + eps)
这种方法的好处是,对于高梯度的权重,它们的有效学习率被降低了;而小梯度的权重迭代过程中学习率提升了。要注意的是,这里开根号很重要。平滑参数eps是为了避免除以0的情况,eps一般取值1e-4 到1e-8。
2)、RMSprop
RMSProp方法对Adagrad算法做了一个简单的优化,以减缓它的迭代强度:
cache = decay_rate * cache + (1 - decay_rate) * dx**2
x += - learning_rate * dx / (np.sqrt(cache) + eps)
其中,decay_rate是一个超参数,其值可以在 [0.9, 0.99, 0.999]中选择。
3)、Adam
Adam有点像RMSProp+momentum,效果比RMSProp稍好,其简化版的代码如下:
m = beta1*m + (1-beta1)*dx
v = beta2*v + (1-beta2)*(dx**2)
x += - learning_rate * m / (np.sqrt(v) + eps)
论文中推荐eps = 1e-8,beta1 = 0.9,beta2 = 0.999。
import numpy as np """ 输入:
- w:
- dw:
- config: 包含各种超参数
返回:
- next_w:
- config: """ def sgd(w, dw, config=None): if config is None: config = {}
config.setdefault('learning_rate', 1e-2) w -= config['learning_rate'] * dw
return w, config def sgd_momentum(w, dw, config=None):
"""
结合动量的SGD(最常用) - learning_rate:
- momentum: 动量值
- velocity: A numpy array of the same shape as w and dw used to store a moving
average of the gradients.
"""
if config is None: config = {}
config.setdefault('learning_rate', 1e-2)
config.setdefault('momentum', 0.9)
v = config.get('velocity', np.zeros_like(w)) next_w = None next_w = w
v = config['momentum']* v - config['learning_rate']*dw
next_w +=v config['velocity'] = v return next_w, config def rmsprop(x, dx, config=None):
""" - learning_rate:
- decay_rate:
- epsilon: 小数值 避免分母为零
- cache:
"""
if config is None: config = {}
config.setdefault('learning_rate', 1e-2)
config.setdefault('decay_rate', 0.99)
config.setdefault('epsilon', 1e-8)
config.setdefault('cache', np.zeros_like(x)) next_x = None next_x = x
config['cache'] = config['decay_rate']*config['cache']+(1-config['decay_rate'])*(dx*dx)
x += -config['learning_rate']* dx / (np.sqrt(config['cache'])+config['epsilon']) return next_x, config def adam(x, dx, config=None):
""" - learning_rate
- beta1: m的衰减率
- beta2: v的衰减率
- epsilon
- m: Moving average of gradient.
- v: Moving average of squared gradient.
- t: Iteration number.
"""
if config is None: config = {}
config.setdefault('learning_rate', 1e-3)
config.setdefault('beta1', 0.9)
config.setdefault('beta2', 0.999)
config.setdefault('epsilon', 1e-8)
config.setdefault('m', np.zeros_like(x))
config.setdefault('v', np.zeros_like(x))
config.setdefault('t', 0) next_x = None config['t']+=1
config['m'] = config['beta1']*config['m'] + (1- config['beta1'])*dx
config['v'] = config['beta2']*config['v'] + (1- config['beta2'])*(dx**2)
mb = config['m']/(1-config['beta1']**config['t'])
vb = config['v']/(1-config['beta2']**config['t'])
next_x = x -config['learning_rate']* mb / (np.sqrt(vb) + config['epsilon']) return next_x, config
『cs231n』作业2选讲_通过代码理解优化器的更多相关文章
- 『cs231n』作业2选讲_通过代码理解Dropout
Dropout def dropout_forward(x, dropout_param): p, mode = dropout_param['p'], dropout_param['mode'] i ...
- 『cs231n』作业1选讲_通过代码理解KNN&交叉验证&SVM
通过K近邻算法探究numpy向量运算提速 茴香豆的“茴”字有... ... 使用三种计算图片距离的方式实现K近邻算法: 1.最为基础的双循环 2.利用numpy的broadca机制实现单循环 3.利用 ...
- 『cs231n』作业3问题1选讲_通过代码理解RNN&图像标注训练
一份不错的作业3资料(含答案) RNN神经元理解 单个RNN神经元行为 括号中表示的是维度 向前传播 def rnn_step_forward(x, prev_h, Wx, Wh, b): " ...
- 『cs231n』作业3问题3选讲_通过代码理解图像梯度
Saliency Maps 这部分想探究一下 CNN 内部的原理,参考论文 Deep Inside Convolutional Networks: Visualising Image Classifi ...
- 『cs231n』作业3问题2选讲_通过代码理解LSTM网络
LSTM神经元行为分析 LSTM 公式可以描述如下: itftotgtctht=sigmoid(Wixxt+Wihht−1+bi)=sigmoid(Wfxxt+Wfhht−1+bf)=sigmoid( ...
- 『cs231n』作业3问题4选讲_图像梯度应用强化
[注],本节(上节也是)的model是一个已经训练完成的CNN分类网络. 随机数图片向前传播后对目标类优化,反向优化图片本体 def create_class_visualization(target ...
- 『cs231n』计算机视觉基础
线性分类器损失函数明细: 『cs231n』线性分类器损失函数 最优化Optimiz部分代码: 1.随机搜索 bestloss = float('inf') # 无穷大 for num in range ...
- 『cs231n』通过代码理解风格迁移
『cs231n』卷积神经网络的可视化应用 文件目录 vgg16.py import os import numpy as np import tensorflow as tf from downloa ...
- 『TensorFlow』SSD源码学习_其一:论文及开源项目文档介绍
一.论文介绍 读论文系列:Object Detection ECCV2016 SSD 一句话概括:SSD就是关于类别的多尺度RPN网络 基本思路: 基础网络后接多层feature map 多层feat ...
随机推荐
- IP分片丢失重传
尽管IP分片看起来是是透明的,但有一点让人不想使用它:即使只丢失一片数据也要重传整个数据报.为什么会发生这种情况呢? 因为IP层本身没有超时重传的机制——由更高层来负责超时和重传(TCP有超时 ...
- python之路----常用模块二
collections模块 在内置数据类型(dict.list.set.tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter.deque.defaultdict. ...
- Non-resolvable parent POM
今天导入公司项目,maven聚合项目,但是项目目录结构不正确,内层的项目的parent不是外层项目,这个......有点无语,结果导入直接报错.同事说,我们导入是好好的啊,原来他们用的是eclipse ...
- 04: 使用BeautifulSoup封装的xss过滤模块
目录: 1.1 xss攻击简介 1.2 xss攻击解决方法 1.1 xss攻击简介返回顶部 1.简介 1. 跨站脚本(cross site script)为了避免与样式css混淆,所以简称为XSS. ...
- Java 第二次实验20145104 张家明
实验二 Java面向对象程序设计 实验内容 初步掌握单元测试和TDD 理解并掌握面向对象三要素:封装.继承.多态 初步掌握UML建模 熟悉S.O.L.I.D原则 了解设计模式 实验步骤 (一)单元测试 ...
- C语言程序设计实习报告
C语言程序设计实习报告 简介 语言实践心得体会范文在科技高度发展的今天,计算机在人们之中的作用越来越突出.而c语言作为一种计算机的语言,我们学习它,有助于我们更好的了解计算机,与计算机进行交流,因此, ...
- 20165211 获奖感想及java课程总结
20165211 获奖感想及java课程总结 理论脱离实践是最大的不幸.--达芬奇 这句话,是我在学习Java之前,假期内写的20165211 学习基础和C语言调查里的所引用的一句话,是当时我对Jav ...
- Spring Aop的理解和简单实现
1.AOP概念 所说的面向切面编程其实就是在处理一系列业务逻辑的时候这一系列动作看成一个动作集合.比如连接数据库来说: 加载驱动-----获取class--------获取连接对象-------访问数 ...
- C#中基于流的XML文件操作笔记
System.Xml.XmlReader和System.Xml.XmlWriters是两个抽象类,XmlReader提供了对于XML数据的快速,非缓存,只进模式的读取器,XmlWriter表示一个编写 ...
- /etc/profile、/etc/bashrc、~/.bash_profile、~/.bashrc 文件的作用
转载自:http://blog.csdn.net/u013968345/article/details/21262033 /etc/profile:此文件为系统的每个用户设置环境信息,当用户第一次登 ...