【CF889E】Mod Mod Mod DP
【CF889E】Mod Mod Mod
题意:给你一个序列$a_1,a_2...a_n$,定义$f(x,n)=x\mod a_n$,$f(x,i)=x\mod a_i+f(x \mod a_i,i+1) (1 \le i<n)$。
最大化f(x,1)。
$n\le 200000,a_i\le 10^9$
题解:超级神的DP题。(题目名字好暴力啊~)
首先有一个性质,一个数对一个比它小的数取模,最多取log次就会变成0。我们思考如何利用这个性质。
如果我们令f[x][i]就是题目中的f(x,i),那么每次i++的时候我们都要更新所有的dp值。不过我们可以将答案变成i*x+b的形式,那么f[d][i]就代表当x<=d时,最大的b值。这也就是说,我们dp维护的其实使若干条线段,我们要在斜率一定的时候,最大化截距。
思考如何转移,我们从f[d][i]可以转移到$f[d \mod a_i][i+1]$,也可以转移到$f[a_i-1][i+1]$(前提:ai<=d)。我们发现我们可以将所有$f[a_i-1][i+1]$合并,并且对于d<ai的状态,dp值并不改变,我们可以不理会这些状态。所以时间复杂度是多少呢?
上面已经说过了,一个数我们只在它被取模的时候更新状态,并且每次我们只新加入一个数ai-1,所以最终复杂度是$O(n\log n)$的。
当然,如果你像我一样比较懒用map维护dp值,需要再加一个log。
#include <cstdio>
#include <cstring>
#include <map>
#include <algorithm>
#include <iostream>
using namespace std;
const int maxn=200010;
typedef long long ll;
ll n,ans,v;
map<ll,ll> f;
map<ll,ll>::iterator it;
inline ll rd()
{
ll ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
int main()
{
n=rd();
ll i,a,b;
f[rd()-1]=0;
for(i=2;i<=n;i++)
{
v=rd();
while(f.begin()!=f.end())
{
it=f.end(),it--,a=(*it).first,b=(*it).second;
if(a<v) break;
f[v-1]=max(f[v-1],b+(i-1)*(a-a%v-v));
f[a%v]=max(f[a%v],b+(i-1)*(a-a%v));
f.erase(it);
}
}
for(it=f.begin();it!=f.end();it++) ans=max(ans,n*((*it).first)+(*it).second);
printf("%I64d",ans);
return 0;
}
【CF889E】Mod Mod Mod DP的更多相关文章
- 【模板】exBSGS/Spoj3105 Mod
[模板]exBSGS/Spoj3105 Mod 题目描述 已知数\(a,p,b\),求满足\(a^x\equiv b \pmod p\)的最小自然数\(x\). 输入输出格式 输入格式: 每个测试文件 ...
- 【题解】NOIP2017逛公园(DP)
[题解]NOIP2017逛公园(DP) 第一次交挂了27分...我是不是必将惨败了... 考虑这样一种做法,设\(d_i\)表示从该节点到n节点的最短路径,\(dp(i,k)\)表示从\(i\)节点 ...
- 【题解】284E. Coin Troubles(dp+图论建模)
[题解]284E. Coin Troubles(dp+图论建模) 题意就是要你跑一个完全背包,但是要求背包的方案中有个数相对大小的限制 考虑一个\(c_i<c_j\)的限制,就是一个\(c_i\ ...
- 【BZOJ4712】洪水(动态dp)
[BZOJ4712]洪水(动态dp) 题面 BZOJ 然而是权限题QwQ,所以粘过来算了. Description 小A走到一个山脚下,准备给自己造一个小屋.这时候,小A的朋友(op,又叫管理员)打开 ...
- 【题解】Jury Compromise(链表+DP)
[题解]Jury Compromise(链表+DP) 传送门 题目大意 给你\(n\le 200\)个元素,一个元素有两个特征值,\(c_i\)和\(d_i\),\(c,d \in [0,20]\), ...
- 【题解】Making The Grade(DP+结论)
[题解]Making The Grade(DP+结论) VJ:Making the Grade HNOI-D2-T3 原题,禁赛三年. 或许是我做过的最简单的DP题了吧(一遍过是什么东西) 之前做过关 ...
- 【BZOJ】2310: ParkII 插头DP
[题意]给定m*n的整数矩阵,求经过所有点至多一次路径的最大数值和.n<=8,m<=100. [算法]插头DP [题解]最小表示法确实十分通用,处理简单路径问题只需要状态多加一位表示独立插 ...
- 【BZOJ4818】[Sdoi2017]序列计数 DP+矩阵乘法
[BZOJ4818][Sdoi2017]序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ,这n个数 ...
- 【BZOJ3864】Hero meet devil DP套DP
[BZOJ3864]Hero meet devil Description There is an old country and the king fell in love with a devil ...
随机推荐
- 使用FileZilla解决从Windows上传文件到Linux vsftpd的乱码问题!
日前将golang的开发环境从windows转移到了CentOS6上,为了把以前写得项目代码上传到centos,架设了vsftpd服务,设置为本地用户登录,然后用惯用的ftp软件flashfxp上传了 ...
- Java 11正式发布,这几个逆天新特性教你写出更牛逼的代码
就在前段时间,Oracle 官方宣布 Java 11 (18.9 LTS) 正式发布,可在生产环境中使用! 这无疑对我们来说是一大好的消息.作为一名java开发者来说,虽然又要去学习和了解java11 ...
- Redis性能测试Redis-benchmark
Redis-benchmark是官方自带的Redis性能测试工具 测试Redis在你的系统及你的配置下的读写性能 redis-benchmark可以模拟N个机器,同时发送M个请求 redis-benc ...
- linux添加PYTHONPATH环境变量
1.添加环境变量到pythonpath export PYTHONPATH=$PYTHONPATH:/home/myproject 查看pythonpathecho $PYTHONPATH 可以进入p ...
- [原]NGUI之按钮置灰
传统按钮置灰,需要使用另外一张纹理. 本例通过修改shader和NGUI sprite的r值实现按钮置灰.优势:节省纹理,操作简单 将NGUI Unlit/Transparent Colored片段部 ...
- java图片裁剪和java生成缩略图
一.缩略图 在浏览相冊的时候.可能须要生成相应的缩略图. 直接上代码: public class ImageUtil { private Logger log = LoggerFactory.getL ...
- php 图片上传 500 Internal Server Error 错误
写php简单上传图片时,发现200k的图片上传时报Internal Server Error错误,检查了upload_max_filesize,及其他post_max_size.max_input_t ...
- 【AI】卷积
一 边界补充 1 补零填充 2 边界复制填充 3 镜像填充 4 块填充 二 卷积核 1 平滑均值滤波 2 高斯平滑 3 图像锐化 4 梯度Prewitt 5 Soble边缘检测:垂直梯度水平梯度 6 ...
- 脚本控制animation的事件
由于动作设计经常修改动作,所以每次改完都要再添加一次animation的事件,所以就直接写了个脚本,当然以后可以做成表格,然后用脚本从表格中读取,然后生成对应的animation事件.在Assets/ ...
- sine曲线向前运动
using UnityEngine; using System.Collections; public class sineWork : MonoBehaviour { float verticalS ...