【CF889E】Mod Mod Mod DP
【CF889E】Mod Mod Mod
题意:给你一个序列$a_1,a_2...a_n$,定义$f(x,n)=x\mod a_n$,$f(x,i)=x\mod a_i+f(x \mod a_i,i+1) (1 \le i<n)$。
最大化f(x,1)。
$n\le 200000,a_i\le 10^9$
题解:超级神的DP题。(题目名字好暴力啊~)
首先有一个性质,一个数对一个比它小的数取模,最多取log次就会变成0。我们思考如何利用这个性质。
如果我们令f[x][i]就是题目中的f(x,i),那么每次i++的时候我们都要更新所有的dp值。不过我们可以将答案变成i*x+b的形式,那么f[d][i]就代表当x<=d时,最大的b值。这也就是说,我们dp维护的其实使若干条线段,我们要在斜率一定的时候,最大化截距。
思考如何转移,我们从f[d][i]可以转移到$f[d \mod a_i][i+1]$,也可以转移到$f[a_i-1][i+1]$(前提:ai<=d)。我们发现我们可以将所有$f[a_i-1][i+1]$合并,并且对于d<ai的状态,dp值并不改变,我们可以不理会这些状态。所以时间复杂度是多少呢?
上面已经说过了,一个数我们只在它被取模的时候更新状态,并且每次我们只新加入一个数ai-1,所以最终复杂度是$O(n\log n)$的。
当然,如果你像我一样比较懒用map维护dp值,需要再加一个log。
#include <cstdio>
#include <cstring>
#include <map>
#include <algorithm>
#include <iostream>
using namespace std;
const int maxn=200010;
typedef long long ll;
ll n,ans,v;
map<ll,ll> f;
map<ll,ll>::iterator it;
inline ll rd()
{
ll ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-') f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+(gc^'0'),gc=getchar();
return ret*f;
}
int main()
{
n=rd();
ll i,a,b;
f[rd()-1]=0;
for(i=2;i<=n;i++)
{
v=rd();
while(f.begin()!=f.end())
{
it=f.end(),it--,a=(*it).first,b=(*it).second;
if(a<v) break;
f[v-1]=max(f[v-1],b+(i-1)*(a-a%v-v));
f[a%v]=max(f[a%v],b+(i-1)*(a-a%v));
f.erase(it);
}
}
for(it=f.begin();it!=f.end();it++) ans=max(ans,n*((*it).first)+(*it).second);
printf("%I64d",ans);
return 0;
}
【CF889E】Mod Mod Mod DP的更多相关文章
- 【模板】exBSGS/Spoj3105 Mod
[模板]exBSGS/Spoj3105 Mod 题目描述 已知数\(a,p,b\),求满足\(a^x\equiv b \pmod p\)的最小自然数\(x\). 输入输出格式 输入格式: 每个测试文件 ...
- 【题解】NOIP2017逛公园(DP)
[题解]NOIP2017逛公园(DP) 第一次交挂了27分...我是不是必将惨败了... 考虑这样一种做法,设\(d_i\)表示从该节点到n节点的最短路径,\(dp(i,k)\)表示从\(i\)节点 ...
- 【题解】284E. Coin Troubles(dp+图论建模)
[题解]284E. Coin Troubles(dp+图论建模) 题意就是要你跑一个完全背包,但是要求背包的方案中有个数相对大小的限制 考虑一个\(c_i<c_j\)的限制,就是一个\(c_i\ ...
- 【BZOJ4712】洪水(动态dp)
[BZOJ4712]洪水(动态dp) 题面 BZOJ 然而是权限题QwQ,所以粘过来算了. Description 小A走到一个山脚下,准备给自己造一个小屋.这时候,小A的朋友(op,又叫管理员)打开 ...
- 【题解】Jury Compromise(链表+DP)
[题解]Jury Compromise(链表+DP) 传送门 题目大意 给你\(n\le 200\)个元素,一个元素有两个特征值,\(c_i\)和\(d_i\),\(c,d \in [0,20]\), ...
- 【题解】Making The Grade(DP+结论)
[题解]Making The Grade(DP+结论) VJ:Making the Grade HNOI-D2-T3 原题,禁赛三年. 或许是我做过的最简单的DP题了吧(一遍过是什么东西) 之前做过关 ...
- 【BZOJ】2310: ParkII 插头DP
[题意]给定m*n的整数矩阵,求经过所有点至多一次路径的最大数值和.n<=8,m<=100. [算法]插头DP [题解]最小表示法确实十分通用,处理简单路径问题只需要状态多加一位表示独立插 ...
- 【BZOJ4818】[Sdoi2017]序列计数 DP+矩阵乘法
[BZOJ4818][Sdoi2017]序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ,这n个数 ...
- 【BZOJ3864】Hero meet devil DP套DP
[BZOJ3864]Hero meet devil Description There is an old country and the king fell in love with a devil ...
随机推荐
- 页面 JavaScript 存在多个同名方法的调用分析
在 JavaScript 中,不存在方法重载的概念,方法重载指的是可以定义不同类型的参数和参数个数的同名方法,然后可以按需调用. 如需实现按参数个数的不同去执行不同的方法主体,正确的做法是通过定义一个 ...
- Objective-C语法之可变参数
可变参数的方法在Objective-C中不罕见,像Cocoa中的很多常见的方法都是可变参数的,如: NSLog(NSString *format, ...) + (id)arrayWithObject ...
- LINE@生活圈招募好友秘笈
什么是「获得更多好友」页面? 您可从 LINE@ app >管理>获得更多好友 进入此页面. ▼ 「获得更多好友」新介面中,募集好友的四大秘诀 秘诀一.「以社群网站或电子邮件分享」 • ...
- 错误 Unable to find vcvarsall.bat 的终极无敌最完美的解决办法
Windows 上通过 pip 安装 python 包,经常会出现这种错误. 如:pip install pyodbc. 这种错误的简单明了解释就是:python 编译器找不到计算机上面的 VC 编译 ...
- 将文件导入到SQL server数据库表中的字段中
一.在要执行的sql server数据库a中执行如下脚本,创建存储过程sp_textcopy /* 将二进制文件导入.导出到数据库相应字段列中 */ CREATE PROCEDURE sp_textc ...
- [Module] 08 - MVP by Mosby
From: Mosby MVP使用教程[作者用心] View是消极视图(Passive View), 它尽量不去主动做事, 让Presenter通过抽象方式控制View 例子: 例如Presenter ...
- Git中的文件状态和使用问题解决
(暂存区 即Index In Git) commit 到 local respository的内容,不想push,则使用git reset 将文件状态回转到staged|modified|unstag ...
- Struts2_day01讲义_使用Struts2完成客户列表显示的功能
- c# new的三种用法
在 C# 中,new 关键字可用作运算符.修饰符或约束. 1)new 运算符:用于创建对象和调用构造函数.这种大家都比较熟悉,没什么好说的了. 2)new 修饰符:在用作修饰符时,new 关键字可以显 ...
- linux-满足多字符条件统计行数
测试数据: 2017-10-24 14:14:11:1123 [ INFO] order_type=add,order_id=9150882564978710367790292017-10-24 14 ...