转自:http://kaimingwan.com/post/alluxio/effective-spark-rdds-with-alluxio

1. 介绍

近期,作者给我推荐了一篇spark on alluxio的文章。原文地址:Effective Spark RDDs with Alluxio

本文不会全文翻译,主要提取一些文章的内容和观点结合自己的理解做下总结。

2. 引言

文章首先说了像百度、去哪儿这些企业都已经在生产上用上了alluxio,效果很好(spark streaming job提升15倍-300倍)。

在不使用alluxio之前,可能由于内存不足会导致spark job性能变差,甚至无法完成。本文也主要介绍alluxio是如何去改进spark性能,以及使用spark on alluxio的注意点。文中采用spark 2.0, alluxio版本1.2。

alluxio可以使得spark jobs共享内存数据。通过把RDD保存在alluxio使得RDD可以在多个spark job之间共享。

3. Alluxio and Spark RDD Cache

spark提升性能主要是可以把RDD放到Spark executors拥有的内存中,方便下一次访问时可以直接访问。这样就可以起到提升性能的效果。由于可能有很大的数据集,可能有时会导致没有足够的内存用于计算。例如去哪儿之前就遇到过这样的问题,即数据集太大导致无法放入内存。并且如果JOB crash了,这些内存数据也不会持久化。那么下一次访问的时候,就无法从内存取数据来加速了。

将RDD数据存放在ALLUXIO是个可选的方案。spark job不需要配置额外的内存来存放数据,只需要预留足够的内存用于计算即可。数据存放在alluxio不受job crash的影响。

将RDD保存到alluxio时比较简单的,只需要将RDD保存到ALLUXIO即可。有两种方式来保存RDD文件:

  1. saveAsTextFile
  2. saveAsObjectFile

通过以下两种方式,可以从alluxio内存空间读取文件

  1. sc.textFile
  2. sc.objectFile

下面通过一些实验来理解使用alluxio和使用Spark RDD cache的区别

实验硬件信息:single r3.2xlarge Amazon EC2 instance, with 61GB of memory and 8 cores.

4. 保存RDD

实验分别对比的是:

  1. 使用 Spark rdd cache: 采用persist()保存RDD
  2. 使用alluxio: 采用saveAsTextFile和saveAsObjectFile这两个API

4.1 采用persist()

通过persist() API可以在不同的存储媒介上保存RDD:

作为实验,我们涉及以下的存储方式:

  1. MEMORY_ONLY: 在Spark的JVM内存上存储JAVA对象
  2. MEMORY_ONLY_SER:在Spark的JVM内存上存储序列化后的JAVA对象
  3. DISK_ONLY: 保存在本地磁盘

例子:

rdd.persist(MEMORY_ONLY)
rdd.count()

4.2 采用saveAsTextFile和saveAsObjectFile

例子:

rdd.saveAsTextFile(alluxioPath)
rdd = sc.textFile(alluxioPath)
rdd.count()

5. 读取保存后的RDD

RDD保存后,在后续计算中,都可以读取出来使用。我们通过测试读取RDD并且使用count()来统计行数所消耗的时间来衡量性能。下图是实验的结果:

从图上可以看到,RDD存放在ALLUXIO中,其性能和数据集大小之间的关系是比较稳定的。当RDD存放在Spark JVM内存中时,可以看到当RDD size超过10GB时, MEMORY_ONLY的方式就开始性能下降了。这个主要是由于在Spark Cache当中如果不做序列化,RDD大小会比源文件大很多。所以虽然有61GB的总内存,但是从10G开始就开始性能会下降。

此外图上也能看到,对于太小的数据集来说,RDD存放在Spark JVM中反而比使用alluxio性能更好一些。

对于一个给定内存大小的节点来说,alluxio使得应用能够以内存速度处理更多的数据。(图上看起来就是,Spark JVM cache很容易就放不下比较大的数据集)

Effective Spark RDDs with Alluxio【转】的更多相关文章

  1. Spark RDDs vs DataFrames vs SparkSQL

    简介 Spark的 RDD.DataFrame 和 SparkSQL的性能比较. 2方面的比较 单条记录的随机查找 aggregation聚合并且sorting后输出 使用以下Spark的三种方式来解 ...

  2. <Spark><Programming><RDDs>

    Introduction to Core Spark Concepts driver program: 在集群上启动一系列的并行操作 包含应用的main函数,定义集群上的分布式数据集,操作数据集 通过 ...

  3. Hive架构及Hive On Spark

    Hive的所有数据都存在HDFS中. (1)Table:每个表都对应在HDFS中的目录下,数据是经过序列化后存储在该目录中.同时Hive也支持表中的数据存储在其他类型的文件系统中,如NFS或本地文件系 ...

  4. Spark之GraphX的Graph_scala学习

    /* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreem ...

  5. 搭建一个IntelliJ的Spark项目

    之前发现创建一个新项目之后,无法添加scala class 创建新项目 选择maven项目,然后选择simple或者quickstart: 进入项目后,在Project Structure里面,在gl ...

  6. spark 三种数据集的关系(一)

    Catalyst Optimizer: Dataset 数据集仅可用Scala或Java.但是,我们提供了以下上下文来更好地理解Spark 2.0的方向数据集是在2015年作为Apache Spark ...

  7. Spark OFF_HEP变迁

    在文章的开头,安利一下我自己的github上的一个项目:AlluxioBlockManager,同时还有我的github上的博客:blog这个项目的作用是替代Spark2.0以前默认的TachyonB ...

  8. Spark RDD Tutorial

    Spark RDD教程 这个教程将会帮助你理解和使用Apache Spark RDD.所有的在这个教程中使用的RDD例子将会提供在github上,供大家快速的浏览. 什么是RDD(Rssilient ...

  9. A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets(中英双语)

    文章标题 A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets 且谈Apache Spark的API三剑客:RDD.Dat ...

随机推荐

  1. redis统计大key

    –bigkeys redis-cli -h <host> -p <port> -n <db> --bigkeys 这条命令会从指定的 Redis DB 中持续采样, ...

  2. HDUOJ-----Climbing Worm

    Climbing Worm Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  3. 构建高性能数据库缓存之redis主从复制

    一.什么是redis主从复制? 主从复制,当用户往Master端写入数据时,通过Redis Sync机制将数据文件发送至Slave,Slave也会执行相同的操作确保数据一致:且实现Redis的主从复制 ...

  4. Ubuntu菜鸟入门(十五)—— 安装aras2下载软件

    一.安装arias2 sudo add-apt-repository ppa:t-tujikawa/ppa sudo apt-get update sudo apt-get install aria2 ...

  5. Android----Thread+Handler 线程 消息循环(转载)

    近来找了一些关于android线程间通信的资料,整理学习了一下,并制作了一个简单的例子. andriod提供了 Handler 和 Looper 来满足线程间的通信.例如一个子线程从网络上下载了一副图 ...

  6. visual studio 设置代码注释模板

    1.C#模板文件: 路径:C:\Program Files (x86)\Microsoft Visual Studio 14.0\Common7\IDE\ItemTemplates\CSharp\Co ...

  7. windows10安装tensorflow的gpu版本(pip3安装方式)

    前言: TensorFlow 有cpu和 gpu两个版本:gpu版本需要英伟达CUDA 和 cuDNN 的支持,cpu版本不需要:本文主要安装gpu版本. 1.环境 gpu:确认你的显卡支持 CUDA ...

  8. 【struts2】预定义拦截器

    1)预定义拦截器 Struts2有默认的拦截器配置,也就是说,虽然我们没有主动去配置任何关于拦截器的东西,但是Struts2会使用默认引用的拦截器.由于Struts2的默认拦截器声明和引用都在这个St ...

  9. 使用ShellExecute打开文件夹并选中文件

    原文链接: http://futurecode.is-programmer.com/posts/24780.html 假设在C:\目录下存在文件a.txt. 打开这个目录是ShellExecute的常 ...

  10. Java Nashorn--Part 5

    Nashorn 的高级应用 Nashorn 是一个复杂的编程环境,它被设计为一个强大的平台,用于部署应用程序,并与Java具有极大的互操作性. 让我们来看一些更高级的用于 JavaScript 到 J ...