POJ 1637 Sightseeing tour (SAP | Dinic 混合欧拉图的判断)
|
Sightseeing tour
Description The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that tourists can see every corner of the beautiful city. They want to construct the tour so that every street in the city is visited exactly once. The bus should also start and end at the same junction. As in any city, the streets are either one-way or two-way, traffic rules that must be obeyed by the tour bus. Help the executive board and determine if it's possible to construct a sightseeing tour under these constraints.
Input On the first line of the input is a single positive integer n, telling the number of test scenarios to follow. Each scenario begins with a line containing two positive integers m and s, 1 <= m <= 200,1 <= s <= 1000 being the number of junctions and streets, respectively. The following s lines contain the streets. Each street is described with three integers, xi, yi, and di, 1 <= xi,yi <= m, 0 <= di <= 1, where xi and yi are the junctions connected by a street. If di=1, then the street is a one-way street (going from xi to yi), otherwise it's a two-way street. You may assume that there exists a junction from where all other junctions can be reached.
Output For each scenario, output one line containing the text "possible" or "impossible", whether or not it's possible to construct a sightseeing tour.
Sample Input 4 Sample Output possible Source |
给出一张混合图(有有向边,也有无向边),判断是否存在欧拉回路。
首先是对图中的无向边随意定一个方向,然后统计每个点的入度(indeg)和出度(outdeg),如果(indeg - outdeg)是奇数的话,一定不存在欧拉回路;
如果所有点的入度和出度之差都是偶数,那么就开始网络流构图:
1,对于有向边,舍弃;对于无向边,就按照最开始指定的方向建权值为 1 的边;
2,对于入度小于出度的点,从源点连一条到它的边,权值为(outdeg - indeg)/2;出度小于入度的点,连一条它到汇点的权值为(indeg - outdeg)/2 的边;
构图完成,如果满流(求出的最大流值 == 和汇点所有连边的权值之和),那么存在欧拉回路,否则不存在。
另附一个讲解欧拉图不错的博客:http://www.cnblogs.com/destinydesigner/archive/2009/09/28/1575674.html
SAP果然快,0ms:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue> using namespace std; const int VM=;
const int EM=;
const int INF=0x3f3f3f3f; struct Edge{
int to,nxt;
int cap;
}edge[EM<<]; int n,m,cnt,head[VM];
int src,des,tot,sum,indeg[VM],outdeg[VM];
int dep[VM],gap[VM],cur[VM],aug[VM],pre[VM]; void addedge(int cu,int cv,int cw){
edge[cnt].to=cv; edge[cnt].cap=cw; edge[cnt].nxt=head[cu];
head[cu]=cnt++;
edge[cnt].to=cu; edge[cnt].cap=; edge[cnt].nxt=head[cv];
head[cv]=cnt++;
} int SAP(int n){
int max_flow=,u=src,v;
int id,mindep;
aug[src]=INF;
pre[src]=-;
memset(dep,,sizeof(dep));
memset(gap,,sizeof(gap));
gap[]=n;
for(int i=;i<=n;i++)
cur[i]=head[i]; // 初始化当前弧为第一条弧
while(dep[src]<n){
int flag=;
if(u==des){
max_flow+=aug[des];
for(v=pre[des];v!=-;v=pre[v]){ // 路径回溯更新残留网络
id=cur[v];
edge[id].cap-=aug[des];
edge[id^].cap+=aug[des];
aug[v]-=aug[des]; // 修改可增广量,以后会用到
if(edge[id].cap==) // 不回退到源点,仅回退到容量为0的弧的弧尾
u=v;
}
}
for(int i=cur[u];i!=-;i=edge[i].nxt){
v=edge[i].to; // 从当前弧开始查找允许弧
if(edge[i].cap> && dep[u]==dep[v]+){ // 找到允许弧
flag=;
pre[v]=u;
cur[u]=i;
aug[v]=min(aug[u],edge[i].cap);
u=v;
break;
}
}
if(!flag){
if(--gap[dep[u]]==) /* gap优化,层次树出现断层则结束算法 */
break;
mindep=n;
cur[u]=head[u];
for(int i=head[u];i!=-;i=edge[i].nxt){
v=edge[i].to;
if(edge[i].cap> && dep[v]<mindep){
mindep=dep[v];
cur[u]=i; // 修改标号的同时修改当前弧
}
}
dep[u]=mindep+;
gap[dep[u]]++;
if(u!=src) // 回溯继续寻找允许弧
u=pre[u];
}
}
return max_flow;
} void Init(){
cnt=;
memset(head,-,sizeof(head));
memset(indeg,,sizeof(indeg));
memset(outdeg,,sizeof(outdeg));
} int main(){ //freopen("input.txt","r",stdin); int t;
scanf("%d",&t);
while(t--){
Init();
scanf("%d%d",&n,&m);
int u,v,c;
for(int i=;i<m;i++){
scanf("%d%d%d",&u,&v,&c);
indeg[v]++;
outdeg[u]++;
if(c==)
addedge(u,v,);
} int flag=;
for(int i=;i<=n;i++)
if((indeg[i]-outdeg[i])%==){
flag=;
break;
}
if(!flag)
puts("impossible");
else{
sum=;
src=, des=n+;
for(int i=;i<=n;i++){ //无向边建图,有向边舍弃
if(indeg[i]<outdeg[i])
addedge(src,i,(outdeg[i]-indeg[i])/);
else if(indeg[i]>outdeg[i]){
addedge(i,des,(indeg[i]-outdeg[i])/);
sum+=(indeg[i]-outdeg[i])/;
}
}
int ans=SAP(des+);
if(sum==ans)
puts("possible");
else
puts("impossible");
}
}
return ;
}
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue> using namespace std; const int VM=;
const int EM=;
const int INF=0x3f3f3f3f; struct Edge{
int u,v,nxt;
int cap;
}edge[EM<<]; int n,m,cnt,head[VM];
int src,des,tot,sum,dep[VM],indeg[VM],outdeg[VM]; void addedge(int cu,int cv,int cw){
edge[cnt].u=cu; edge[cnt].v=cv; edge[cnt].cap=cw;
edge[cnt].nxt=head[cu]; head[cu]=cnt++;
edge[cnt].u=cv; edge[cnt].v=cu; edge[cnt].cap=;
edge[cnt].nxt=head[cv]; head[cv]=cnt++;
} void Init(){
cnt=;
memset(head,-,sizeof(head));
memset(indeg,,sizeof(indeg));
memset(outdeg,,sizeof(outdeg));
} int BFS(){
queue<int> q;
while(!q.empty())
q.pop();
memset(dep,-,sizeof(dep));
dep[src]=;
q.push(src);
while(!q.empty()){
int u=q.front();
q.pop();
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].v;
if(edge[i].cap> && dep[v]==-){ //没有标记,且可行流大于0
dep[v]=dep[u]+;
q.push(v);
}
}
}
return dep[des]!=-; //汇点是否成功标号,也就是说是否找到增广路
} int DFS(int u,int minx){
if(u==des)
return minx;
int tmp;
for(int i=head[u];i!=-;i=edge[i].nxt){
int v=edge[i].v;
if(edge[i].cap> && dep[v]==dep[u]+ && (tmp=DFS(v,min(minx,edge[i].cap)))){
edge[i].cap-=tmp;
edge[i^].cap+=tmp;
return tmp;
}
}
dep[u]=-;
return ;
} int Dinic(){
int ans=,tmp;
while(BFS()){
while(){
tmp=DFS(src,INF);
if(tmp==)
break;
ans+=tmp;
}
}
return ans;
} int main(){ //freopen("input.txt","r",stdin); int t;
scanf("%d",&t);
while(t--){
Init();
scanf("%d%d",&n,&m);
int u,v,c;
for(int i=;i<m;i++){
scanf("%d%d%d",&u,&v,&c);
indeg[v]++;
outdeg[u]++;
if(c==)
addedge(u,v,);
} int flag=;
for(int i=;i<=n;i++)
if((indeg[i]-outdeg[i])%==){
flag=;
break;
}
if(!flag)
puts("impossible");
else{
sum=;
src=, des=n+;
for(int i=;i<=n;i++){ //无向边建图,有向边舍弃
if(indeg[i]<outdeg[i])
addedge(src,i,(outdeg[i]-indeg[i])/);
else if(indeg[i]>outdeg[i]){
addedge(i,des,(indeg[i]-outdeg[i])/);
sum+=(indeg[i]-outdeg[i])/;
}
}
int ans=Dinic();
if(sum==ans)
puts("possible");
else
puts("impossible");
}
}
return ;
}
POJ 1637 Sightseeing tour (SAP | Dinic 混合欧拉图的判断)的更多相关文章
- POJ 1637 Sightseeing tour(最大流)
POJ 1637 Sightseeing tour 题目链接 题意:给一些有向边一些无向边,问能否把无向边定向之后确定一个欧拉回路 思路:这题的模型很的巧妙,转一个http://blog.csdn.n ...
- POJ 1637 Sightseeing tour (混合图欧拉路判定)
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6986 Accepted: 2901 ...
- POJ 1637 - Sightseeing tour - [最大流解决混合图欧拉回路]
嗯,这是我上一篇文章说的那本宝典的第二题,我只想说,真TM是本宝典……做的我又痛苦又激动……(我感觉ACM的日常尽在这张表情中了) 题目链接:http://poj.org/problem?id=163 ...
- POJ 1637 Sightseeing tour (混合图欧拉回路)
Sightseeing tour Description The city executive board in Lund wants to construct a sightseeing tou ...
- POJ 1637 Sightseeing tour
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9276 Accepted: 3924 ...
- 网络流(最大流) POJ 1637 Sightseeing tour
Sightseeing tour Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8628 Accepted: 3636 ...
- POJ 1637 Sightseeing tour(混合图欧拉回路+最大流)
http://poj.org/problem?id=1637 题意:给出n个点和m条边,这些边有些是单向边,有些是双向边,判断是否能构成欧拉回路. 思路: 构成有向图欧拉回路的要求是入度=出度,无向图 ...
- POJ 1637 Sightseeing tour ★混合图欧拉回路
[题目大意]混合图欧拉回路(1 <= N <= 200, 1 <= M <= 1000) [建模方法] 把该图的无向边随便定向,计算每个点的入度和出度.如果有某个点出入度之差为 ...
- poj 1637 Sightseeing tour 混合图欧拉回路 最大流 建图
题目链接 题意 给定一个混合图,里面既有有向边也有无向边.问该图中是否存在一条路径,经过每条边恰好一次. 思路 从欧拉回路说起 首先回顾有向图欧拉回路的充要条件:\(\forall v\in G, d ...
随机推荐
- Eclipse关掉项目SVN的链接
有时候 svn 会导致 eclipse 反应很慢,可以关掉 svn项目信息展现. 1. 点击项目文件夹,右键出现项目信息 2. 选择team项 3. Disconnect.
- 转:C++操作mysql方法总结(1)
原文:http://www.cnblogs.com/joeblackzqq/p/4332945.html C++通过mysql的c api和通过mysql的Connector C++ 1.1.3操作m ...
- java 让图片变黑白
import java.awt.Image;import java.awt.color.ColorSpace;import java.awt.image.BufferedImage;import ja ...
- [Spring Boot] Introduce to Mockito
We have the implemetion: @SpringBootApplication public class MockitoDemoApplication { public static ...
- python绘制很美丽的图表
或许你会觉得python不适合做图形界面的开发,的确如此.可是python却有一个非常美丽的图标模块:pycha,废话少说,先上图,各位看一下. 是不是效果还不错呢,当然这仅仅是一小部分图表,还有其它 ...
- Android ListView 和 ***Adapter 从本地/网络获取歌曲列表
本文内容 环境 项目结构 测试数据 演示 1:SimpleAdapter 演示 2:BaseAdapter 演示 3:CustomLazyList 演示 4:CustomLazyCompleteLis ...
- AngularJs - Javascript MVC 框架
在2012年6月google发布了AngularJs 1.0稳定版, 并宣称:AngularJS可以让你扩展HTML的语法,以便清晰.简洁地表示应用程序中的组件,并允许将标准的HTML作为你的模板语言 ...
- 微软BI 之SSAS 系列 - 在 SQL Server 2012 下查看 SSAS 分析服务的模型以及几个模型的简单介绍
在SSDT中部署一个 SSAS 项目到本地服务器上出现错误. You cannot deploy the model because the localhost deployment server i ...
- linux高精度struct timespec 和 struct timeval
一.struct timespec 定义: typedef long time_t;#ifndef _TIMESPEC#define _TIMESPECstruct timespec {time_t ...
- elasticsearch备忘
1.解决java.lang.RuntimeException: can not run elasticsearch as rootadduser *** //添加用户passwd *** //给用户赋 ...