CF 1073C Vasya and Robot(二分答案)
1 second
256 megabytes
standard input
standard output
Vasya has got a robot which is situated on an infinite Cartesian plane, initially in the cell (0,0)(0,0). Robot can perform the following four kinds of operations:
- U — move from (x,y)(x,y) to (x,y+1)(x,y+1);
- D — move from (x,y)(x,y) to (x,y−1)(x,y−1);
- L — move from (x,y)(x,y) to (x−1,y)(x−1,y);
- R — move from (x,y)(x,y) to (x+1,y)(x+1,y).
Vasya also has got a sequence of nn operations. Vasya wants to modify this sequence so after performing it the robot will end up in (x,y)(x,y).
Vasya wants to change the sequence so the length of changed subsegment is minimum possible. This length can be calculated as follows: maxID−minID+1maxID−minID+1, where maxIDmaxID is the maximum index of a changed operation, and minIDminID is the minimum index of a changed operation. For example, if Vasya changes RRRRRRR to RLRRLRL, then the operations with indices 22, 55 and 77 are changed, so the length of changed subsegment is 7−2+1=67−2+1=6. Another example: if Vasya changes DDDD to DDRD, then the length of changed subsegment is 11.
If there are no changes, then the length of changed subsegment is 00. Changing an operation means replacing it with some operation (possibly the same); Vasya can't insert new operations into the sequence or remove them.
Help Vasya! Tell him the minimum length of subsegment that he needs to change so that the robot will go from (0,0)(0,0) to (x,y)(x,y), or tell him that it's impossible.
The first line contains one integer number n (1≤n≤2⋅105)n (1≤n≤2⋅105) — the number of operations.
The second line contains the sequence of operations — a string of nn characters. Each character is either U, D, L or R.
The third line contains two integers x,y (−109≤x,y≤109)x,y (−109≤x,y≤109) — the coordinates of the cell where the robot should end its path.
Print one integer — the minimum possible length of subsegment that can be changed so the resulting sequence of operations moves the robot from (0,0)(0,0) to (x,y)(x,y). If this change is impossible, print −1−1.
5
RURUU
-2 3
3
4
RULR
1 1
0
3
UUU
100 100
-1
In the first example the sequence can be changed to LULUU. So the length of the changed subsegment is 3−1+1=33−1+1=3.
In the second example the given sequence already leads the robot to (x,y)(x,y), so the length of the changed subsegment is 00.
In the third example the robot can't end his path in the cell (x,y)(x,y).
【题意】
一个机器人从(0,0)出发,输入一段指令字符串,和机器人需要在指定步数后到达的终点,问如果机器人需要在指定步数内到达终点,那么需要对原指令字符串做出怎样的改变,假设改变 字符串的最大下标为maxindex,改变字符串的最小下标为minindex,输出最小的 maxindex-minindex+1,即,输出最小的改变字符串的连续区间长度(该区间内的字符不一定要全部发生改变)
【分析】
首先考虑在什么情况下,无论如何改动这个字符串都不能到达指定位置
1、字符串长度小于从原点到指定位置的距离
2、字符串长度与从原点到指定位置的奇偶性不同
在除去这两种情况下,剩余的情况都一定有答案。鉴于其可能解时连续的整数,因此,可以用二分枚举所有可能,进而找出最小的连续区间长度。
应注意,当根据给定字符串移动就能到达指定位置,即最小区间为0时,应排除在二分枚举的情况之外。
实际写代码时,特殊情况可以被包含于普通情况。但可以作为思路的引子。
当枚举长度为 x 时,考虑在 string 中所有长度为 x 的子串,是否存在一个子串可行。若存在,尝试缩短子串长度;若不存在,延长子串长度。
判断子串是否可行的方法:
设全集为给定字符串,沿着子串的补集移动,记这样移动到的点为 pos 。求 pos 到 指定位置 的距离,记为 d ,记子串的长度为 len。满足如下两种情况,则子串可行。
1、d <= len
2、(len-d)%2==0
【代码】
#include<cstdio>
#include<cstdlib>
using namespace std;
const int N=2e5+5;
int n,ex,ey,sx[N],sy[N];char s[N];
inline bool check(int m){//假定最佳区间长度为m
for(int i=1;i+m-1<=n;i++){
int decx=sx[n]-sx[i+m-1]+sx[i-1];
int decy=sy[n]-sy[i+m-1]+sy[i-1];
//不需要改变的区间恒存在的贡献
int nedx=ex-decx;
int nedy=ey-decy;
//需要改变的区间中,x和y想要到达终点,所需恰好作出的贡献
if(abs(nedx)+abs(nedy)<=m&&!(m-abs(nedx)-abs(nedy)&1)) return 1;
//(abs(tx)+abs(ty)位字符做出使该人刚好到达终点的贡献,
//剩下位的字符如果是偶数,就可以让其多走的路程两两抵消,从而刚好到达终点
}
return 0;
}
int main(){
scanf("%d%s%d%d",&n,s+1,&ex,&ey);
for(int i=1;i<=n;i++){
sx[i]=sx[i-1]+(s[i]=='L'?-1:(s[i]=='R'?1:0));
sy[i]=sy[i-1]+(s[i]=='D'?-1:(s[i]=='U'?1:0));
}
int l=0,r=n,mid,ans=-1;
while(l<=r){
mid=l+r>>1;
if(check(mid)){
ans=mid;
r=mid-1;
}
else{
l=mid+1;
}
}
printf("%d\n",ans);
return 0;
}
CF 1073C Vasya and Robot(二分答案)的更多相关文章
- Codeforces 1073C Vasya and Robot 【二分】
<题目链接> 题目大意: 一个机器人从(0,0)出发,输入一段指令字符串,和机器人需要在指定步数后到达的终点,问如果机器人需要在指定步数内到达终点,那么需要对原指令字符串做出怎样的改变,假 ...
- Educational Codeforces Round 53 (Rated for Div. 2) C Vasya and Robot 二分
题目:题目链接 思路:对于x方向距离与y方向距离之和大于n的情况是肯定不能到达的,另外,如果n比abs(x) + abs(y)大,那么我们总可以用UD或者LR来抵消多余的大小,所以只要abs(x) + ...
- C. Vasya and Robot二分
1.题目描述 Vasya has got a robot which is situated on an infinite Cartesian plane, initially in the cell ...
- CF 672D Robin Hood(二分答案)
D. Robin Hood time limit per test 1 second memory limit per test 256 megabytes input standard input ...
- cf C. Vasya and Robot
http://codeforces.com/contest/355/problem/C 枚举L和R相交的位置. #include <cstdio> #include <cstring ...
- Codeforces 1073C:Vasya and Robot(二分)
C. Vasya and Robot time limit per test: 1 secondmemory limit per test: 256 megabytesinput: standard ...
- Educational Codeforces Round 53 (Rated for Div. 2) C. Vasya and Robot 【二分 + 尺取】
任意门:http://codeforces.com/contest/1073/problem/C C. Vasya and Robot time limit per test 1 second mem ...
- CF 371C-Hamburgers[二分答案]
C. Hamburgers time limit per test 1 second memory limit per test 256 megabytes input standard input ...
- Cf Round #403 B. The Meeting Place Cannot Be Changed(二分答案)
The Meeting Place Cannot Be Changed 我发现我最近越来越zz了,md 连调程序都不会了,首先要有想法,之后输出如果和期望的不一样就从输入开始一步一步地调啊,tmd现在 ...
随机推荐
- Junit结合Spring对Dao层进行单元测试
关于单元测试,上一次就简单的概念和Mock基础做了,参考:http://60.174.249.204:8888/in/modules/article/view.article.php/74 实际开发过 ...
- 如何能延长windows server 2008 R2激活期 .
当windows server 2008 R2使用已经到期的时候,要求激活,我们可以通过以下命令,延长激活期. 在运行中输入:slmgr.vbs -rearm 重新启动windows server 2 ...
- Asp.net中文本框全选的实现
一.鼠标滑过textbox全选 前台: <asp:TextBox runat="server" onMouseOver="this.focus();this.sel ...
- thikphp5.0 ip地址库 解决卡顿问题 curl_init
使用淘宝新浪的地址库非常的使用,但是调用有时候会出现很慢.会导致卡在当前网页. 要想不影响当前速度,因此要使用 curl_init功能. 项目案例:会员登陆日志 user_log 字段:id,user ...
- rdlc报表 矩阵控件下的按组分页
场景: 使用rdlc开发报表,例如订单产品报表,显示多个订单,一个订单有动态生成的固定的多个产品组成,同时统计每个订单里多个产品数量总数. 数据库层面分析: 此报表属于交叉报表,例如5个订单,3个产品 ...
- Windows 2008驱动安装失败的原因及解决方法
希望这些内容能够帮助各位朋友顺利地在Windows Server 2008系统环境下安装使用好各种设备的驱动程序! 寻找安装失败原因 一般来说,当我们将目标设备的驱动安装光盘正确放置到Windows ...
- Openlayers 3计算长度和面积
1.比较粗糙的计算方式 计算长度 var length = lineFeature.getGeometry().getLength(); if (length > 1000) { length ...
- centos6.5环境 安装php5.5.30的redis扩展 介绍
1.下载软件包 wget http://pecl.php.net/get/redis-2.2.5.tgz 2.解压 tar zxvf redis-2.2.5.tgz 3.进入 ...
- 5 -- Hibernate的基本用法 --4 5 JNDI数据源的连接属性
如果无须Hibernate自己管理数据源,而是直接访问容器管理数据源,Hibernate可使用JNDI(Java Naming Directory Interface,Java命名目录接口)数据源的相 ...
- linux定时任务cron配置[转]
实现linux定时任务有:cron.anacron.at等,这里主要介绍cron服务. 名词解释: cron是服务名称,crond是后台进程,crontab则是定制好的计划任务表. 软件包安装: 要使 ...