CF 1073C Vasya and Robot(二分答案)
1 second
256 megabytes
standard input
standard output
Vasya has got a robot which is situated on an infinite Cartesian plane, initially in the cell (0,0)(0,0). Robot can perform the following four kinds of operations:
- U — move from (x,y)(x,y) to (x,y+1)(x,y+1);
- D — move from (x,y)(x,y) to (x,y−1)(x,y−1);
- L — move from (x,y)(x,y) to (x−1,y)(x−1,y);
- R — move from (x,y)(x,y) to (x+1,y)(x+1,y).
Vasya also has got a sequence of nn operations. Vasya wants to modify this sequence so after performing it the robot will end up in (x,y)(x,y).
Vasya wants to change the sequence so the length of changed subsegment is minimum possible. This length can be calculated as follows: maxID−minID+1maxID−minID+1, where maxIDmaxID is the maximum index of a changed operation, and minIDminID is the minimum index of a changed operation. For example, if Vasya changes RRRRRRR to RLRRLRL, then the operations with indices 22, 55 and 77 are changed, so the length of changed subsegment is 7−2+1=67−2+1=6. Another example: if Vasya changes DDDD to DDRD, then the length of changed subsegment is 11.
If there are no changes, then the length of changed subsegment is 00. Changing an operation means replacing it with some operation (possibly the same); Vasya can't insert new operations into the sequence or remove them.
Help Vasya! Tell him the minimum length of subsegment that he needs to change so that the robot will go from (0,0)(0,0) to (x,y)(x,y), or tell him that it's impossible.
The first line contains one integer number n (1≤n≤2⋅105)n (1≤n≤2⋅105) — the number of operations.
The second line contains the sequence of operations — a string of nn characters. Each character is either U, D, L or R.
The third line contains two integers x,y (−109≤x,y≤109)x,y (−109≤x,y≤109) — the coordinates of the cell where the robot should end its path.
Print one integer — the minimum possible length of subsegment that can be changed so the resulting sequence of operations moves the robot from (0,0)(0,0) to (x,y)(x,y). If this change is impossible, print −1−1.
5
RURUU
-2 3
3
4
RULR
1 1
0
3
UUU
100 100
-1
In the first example the sequence can be changed to LULUU. So the length of the changed subsegment is 3−1+1=33−1+1=3.
In the second example the given sequence already leads the robot to (x,y)(x,y), so the length of the changed subsegment is 00.
In the third example the robot can't end his path in the cell (x,y)(x,y).
【题意】
一个机器人从(0,0)出发,输入一段指令字符串,和机器人需要在指定步数后到达的终点,问如果机器人需要在指定步数内到达终点,那么需要对原指令字符串做出怎样的改变,假设改变 字符串的最大下标为maxindex,改变字符串的最小下标为minindex,输出最小的 maxindex-minindex+1,即,输出最小的改变字符串的连续区间长度(该区间内的字符不一定要全部发生改变)
【分析】
首先考虑在什么情况下,无论如何改动这个字符串都不能到达指定位置
1、字符串长度小于从原点到指定位置的距离
2、字符串长度与从原点到指定位置的奇偶性不同
在除去这两种情况下,剩余的情况都一定有答案。鉴于其可能解时连续的整数,因此,可以用二分枚举所有可能,进而找出最小的连续区间长度。
应注意,当根据给定字符串移动就能到达指定位置,即最小区间为0时,应排除在二分枚举的情况之外。
实际写代码时,特殊情况可以被包含于普通情况。但可以作为思路的引子。
当枚举长度为 x 时,考虑在 string 中所有长度为 x 的子串,是否存在一个子串可行。若存在,尝试缩短子串长度;若不存在,延长子串长度。
判断子串是否可行的方法:
设全集为给定字符串,沿着子串的补集移动,记这样移动到的点为 pos 。求 pos 到 指定位置 的距离,记为 d ,记子串的长度为 len。满足如下两种情况,则子串可行。
1、d <= len
2、(len-d)%2==0
【代码】
#include<cstdio>
#include<cstdlib>
using namespace std;
const int N=2e5+5;
int n,ex,ey,sx[N],sy[N];char s[N];
inline bool check(int m){//假定最佳区间长度为m
for(int i=1;i+m-1<=n;i++){
int decx=sx[n]-sx[i+m-1]+sx[i-1];
int decy=sy[n]-sy[i+m-1]+sy[i-1];
//不需要改变的区间恒存在的贡献
int nedx=ex-decx;
int nedy=ey-decy;
//需要改变的区间中,x和y想要到达终点,所需恰好作出的贡献
if(abs(nedx)+abs(nedy)<=m&&!(m-abs(nedx)-abs(nedy)&1)) return 1;
//(abs(tx)+abs(ty)位字符做出使该人刚好到达终点的贡献,
//剩下位的字符如果是偶数,就可以让其多走的路程两两抵消,从而刚好到达终点
}
return 0;
}
int main(){
scanf("%d%s%d%d",&n,s+1,&ex,&ey);
for(int i=1;i<=n;i++){
sx[i]=sx[i-1]+(s[i]=='L'?-1:(s[i]=='R'?1:0));
sy[i]=sy[i-1]+(s[i]=='D'?-1:(s[i]=='U'?1:0));
}
int l=0,r=n,mid,ans=-1;
while(l<=r){
mid=l+r>>1;
if(check(mid)){
ans=mid;
r=mid-1;
}
else{
l=mid+1;
}
}
printf("%d\n",ans);
return 0;
}
CF 1073C Vasya and Robot(二分答案)的更多相关文章
- Codeforces 1073C Vasya and Robot 【二分】
<题目链接> 题目大意: 一个机器人从(0,0)出发,输入一段指令字符串,和机器人需要在指定步数后到达的终点,问如果机器人需要在指定步数内到达终点,那么需要对原指令字符串做出怎样的改变,假 ...
- Educational Codeforces Round 53 (Rated for Div. 2) C Vasya and Robot 二分
题目:题目链接 思路:对于x方向距离与y方向距离之和大于n的情况是肯定不能到达的,另外,如果n比abs(x) + abs(y)大,那么我们总可以用UD或者LR来抵消多余的大小,所以只要abs(x) + ...
- C. Vasya and Robot二分
1.题目描述 Vasya has got a robot which is situated on an infinite Cartesian plane, initially in the cell ...
- CF 672D Robin Hood(二分答案)
D. Robin Hood time limit per test 1 second memory limit per test 256 megabytes input standard input ...
- cf C. Vasya and Robot
http://codeforces.com/contest/355/problem/C 枚举L和R相交的位置. #include <cstdio> #include <cstring ...
- Codeforces 1073C:Vasya and Robot(二分)
C. Vasya and Robot time limit per test: 1 secondmemory limit per test: 256 megabytesinput: standard ...
- Educational Codeforces Round 53 (Rated for Div. 2) C. Vasya and Robot 【二分 + 尺取】
任意门:http://codeforces.com/contest/1073/problem/C C. Vasya and Robot time limit per test 1 second mem ...
- CF 371C-Hamburgers[二分答案]
C. Hamburgers time limit per test 1 second memory limit per test 256 megabytes input standard input ...
- Cf Round #403 B. The Meeting Place Cannot Be Changed(二分答案)
The Meeting Place Cannot Be Changed 我发现我最近越来越zz了,md 连调程序都不会了,首先要有想法,之后输出如果和期望的不一样就从输入开始一步一步地调啊,tmd现在 ...
随机推荐
- 调用 COM 对象
调用 COM 对象 大多数 Windows 程序猿都熟悉组件对象模型(Component Object Model,COM).在某程度上..NET 框架 就是为了替换 COM,可是.系统仍然保留了这个 ...
- iview框架select默认选择一个option的值
给select加v-model,绑定的值为默认要显示的option的value值,展示的则为option的标签之间的内容,并且如果option的value是双引号,这里绑定的值也要双引号,否则不能正常 ...
- Redis集群版在Java中的应用
1.配置redis集群 <?xml version="1.0" encoding="UTF-8"?> <redisCluster> &l ...
- mysql中如何删除表上的索引?删除索引?
需求描述: 今天在做SQL的优化的时候,想要把mysql中某个表上的索引删除掉,突然忘记语法了,找到帮助,在此记录下 操作过程: 1.查看表上的索引 show index from ti_o_sms; ...
- node.js模块依赖及版本号
摘要: Node.js最重要的一个文件就是package.json,其中的配置参数决定了功能.例如下面就是一个例子 { "name": "test", &quo ...
- linux添加PYTHONPATH环境变量
1.添加环境变量到pythonpath export PYTHONPATH=$PYTHONPATH:/home/myproject 查看pythonpathecho $PYTHONPATH 可以进入p ...
- Dubbo -- 系统学习 笔记 -- API参考手册
Dubbo -- 系统学习 笔记 -- 目录 API参考手册 配置API 注解API 模型API 上下文API 服务API API参考手册 Dubbo的常规功能,都保持零侵入,但有些功能不得不用API ...
- 8 -- 深入使用Spring -- 7...2 MVC框架与Spring整合的思考
8.7.2 MVC 框架与Spring整合的思考 对于一个基于B/S架构的JAVA EE 应用而言,用户请求总是向MVC框架的控制器请求,而当控制器拦截到用户请求后,必须调用业务逻辑组件来处理用户请求 ...
- Oracle基本操作,Oracle修改列名,Oracle修改字段类型
oracle基本操作,Oracle修改列名,Oracle修改字段类型 >>>>>>>>>>>>>>>>& ...
- 【代码审计】JTBC(CMS)_PHP_v3.0 任意文件删除漏洞分析
0x00 环境准备 JTBC(CMS)官网:http://www.jtbc.cn 网站源码版本:JTBC_CMS_PHP(3.0) 企业版 程序源码下载:http://download.jtbc. ...