When the system starts up it is running in kernel mode and there is, in a sense, only one process, the initial process. Like all processes, the initial process has a machine state represented by stacks, registers and so on. These will be saved in the initial processes task_struct  data structure when other processes in the system are created and run. At the end of system initialization, the initial process starts up a kernel thread (called init) and then sits in an idle loop doing nothing. Whenever there is nothing else to do the scheduler will run this, idle, process. The idle processes task_struct is the only one that is not dynamically allocated, it is statically defined at kernel build time and is, rather confusingly, called init_task .

The init kernel thread or process has a process identifier of 1 as it is the system's first real process. It does some initial setting up of the system (such as opening the system console and mounting the root file system) and then executes the system initialization program. This is one of /etc/init/bin/init or /sbin/init depending on your system. The init program uses /etc/inittab as a script file to create new processes within the system. These new processes may themselves go on to create new processes. For example the getty process may create a login process when a user attempts to login. All of the processes in the system are descended from the init kernel thread.

New processes are created by cloning old processes, or rather by cloning the current process. A new task is created by a system call (fork or clone)

and the cloning happens within the kernel in kernel mode. At the end of the system call there is a new process waiting to run once the scheduler chooses it. A new task_struct  data structure is allocated from the system's physical memory with one or more physical pages for the cloned processes stacks (user and kernel). A new process identifier may be created, one that is unique within the set of process identifiers in the system. However, it is perfectly reasonable for the cloned process to keep its parents process identifier. The new task_struct  is entered into the task  vector and the contents of the old (current ) processes task_struct  are copied into the cloned task_struct .

When cloning processes Linux allows the two processes to share resources rather than have two seperate copies. This applies to the processes files, signal handlers and virtual memory. When the resources are to be shared their respective count  fields are incremented so that Linux will not deallocate these resources until both processes have finished using them. So, for example, if the cloned process is to share virtual memory, its task_struct  will contain a pointer to the mm_struct  of the original process and that mm_struct  has its count  field incremented to show the number of current processes sharing it.

Cloning a processes virtual memory is rather tricky. A new set of vm_area_struct  data structures must be generated together with their owning mm_struct  data structure and the cloned processes page tables. None of the processes virtual memory is copied a this point. That would be a rather difficult and lengthy task for some of that virtual memory would be in physical memory, some in the executable image that the process is currently executing and possibly some would be in the swap file. Instead Linux uses a technique called ``copy on write'' which means that virtual memory will only be copied when one of the two processes tries to write to it. Any virtual memory that is not written to, even if it can be, will be shared between the two processes without any harm occuring. The read only memory, for example the executable code, will always be shared. For ``copy on write'' to work, the writeable areas have their page table entries marked as read only and the vm_area_struct  data structures describing them are marked as ``copy on write''. When one of the processes attempts to write to this virtual memory a page fault will occur. It is at this point that Linux will make a copy of the memory and fix up the two processes page tables and virtual memory data structures.

linux create a process的更多相关文章

  1. Java JVM、JNI、Native Function Interface、Create New Process Native Function API Analysis

    目录 . JAVA JVM . Java JNI: Java Native Interface . Java Create New Process Native Function API Analys ...

  2. Linux Running State Process ".so"、"code" Injection Technology

    catalog . 引言 . 基于so文件劫持进行代码注入 . 基于函数符号表(PLT)中库函数入口地址的修改进行代码注入 . PLT redirection through shared objec ...

  3. Linux 进程状态 概念 Process State Definition

    From : http://www.linfo.org/process_state.html 进程状态是指在进程描述符中状态位的值. 进程,也可被称为任务,是指一个程序运行的实例. 一个进程描述符是一 ...

  4. Linux 进程状态标识 Process State Definition

    From : http://www.linfo.org/process_state.html 译者:李秋豪 进程状态标识是指在进程描述符中状态位的值. 进程,也可被称为任务,是指一个程序运行的实例. ...

  5. Linux - create usergroup, user and Assigning permissions

    第一步:登录已有的Linux系统,使用root账户,登录好以后,如下图: 这样,就登录到Linux系统中,而且是用root用户登录的 注意:如果,你想要创建用户和用户组,那么你当前登录的用户必须有ro ...

  6. <<Linux kernel development>> Process Management

    The Process On modern operating systems,processes provide two virtualizations:a virtualized processo ...

  7. Bugzilla Error message: couldn't create child process: 720003: index.cgi

    two steps is try to fix this issue. 1. Turn off the windowns firewall 2. Register the perl to the sy ...

  8. Linux Process VS Thread VS LWP

    Process program program==code+data; 一个进程可以对应多个程序,一个程序也可以变成多个进程.程序可以作为一种软件资源长期保存,以文件的形式存放在硬盘 process: ...

  9. Linux中的task,process, thread 简介

    本文的主要目的是介绍在Linux内核中,task,process, thread这3个名字之间的区别和联系.并且和WINDOWS中的相应观念进行比较.如果你已经很清楚了,那么就不用往下看了. LINU ...

随机推荐

  1. 20135234mqy-——信息安全系统设计基础第十一周学习总结

    第八章 异常控制流 8.1异常 异常是异常控制流的一种形式,它一部分是由硬件实现的,一部分是由操作系统实现的. 异常就是控制流中的突变,用来响应处理器状态中的某些变化. 8.1.1异常处理 异常号是到 ...

  2. linux内核分析 第一周

    计算机是如何工作的 冯·诺依曼理论的要点是: 数字计算机的数制采用二进制:计算机应该按照程序顺序执行. 冯·诺依曼体系结构 根据冯·诺依曼体系结构构成的计算机,必须具有如下功能:把需要的程序和数据送至 ...

  3. Java基础部分二

    1.&与&& &位运算符,&&逻辑与运算符&&还具有短路的功能,即如果第一个表达式为false,则不再计算第二个表达式 2.switch ...

  4. 矩阵二分快速幂优化dp动态规划

    矩阵快速幂代码: int n; // 所有矩阵都是 n * n 的矩阵 struct matrix { int a[100][100]; }; matrix matrix_mul(matrix A, ...

  5. vim 操作快捷键 待更~

    shift + g 文件尾 ------ gdb p print start 从main函数开始 n next换行 s step 进入函数

  6. The way to Go(2): 语言的主要特性与发展的环境和影响因素

    Reference: Github: Go Github: The way to Go 语言的主要特性与发展的环境和影响因素 现有编程语言对于Go语言发展的影响: Why Go? C/C++ 的发展速 ...

  7. UVa 120 煎饼

    https://vjudge.net/problem/UVA-120 题意:颠倒连续子序列,使之成为升序. 思路:按照从大到小的顺序,依次选择出一个数字进行分析: ①如果该数字已经在正确的位置上,则不 ...

  8. UVa 253 骰子涂色

    https://vjudge.net/problem/UVA-253 题意:输入两个骰子的六面颜色,判断是否等价. 思路:我最想到的是暴力,不过一直错,也不知道哪里错了.第二种方法就是在一个骰子里出现 ...

  9. 算法笔记--lca倍增算法

    算法笔记 模板: vector<int>g[N]; vector<int>edge[N]; ][N]; int deep[N]; int h[N]; void dfs(int ...

  10. table maker's delimma

    table maker's delimma是计算机浮点数精度的一个问题. 浮点数的表示方式 计算机能表示的数字都是有理数,所有的有理数都可以归结为下面的模式:1.@@@ × 2#### 其中,@@@ ...