拉格朗日插值法(c++)
已给sin0.32=0.314567,sin0.34=0.333487,sin0.36=0.352274,计算sin0.3367的值
#include <iostream>
#include<iomanip>
#include <cmath>
using namespace std;
int main()
{
double numerator_cofficient; //用来记录插值分子的乘积结果
double denominator_coefficient; //用来记录插值分母乘积的结果
double input_x; //需要输入的x的值
double x[3]={0.32,0.34,0.36}; //已知x的值
double y[3]={0.314567,0.333487,0.352274}; //已知y的值
double result=0; //用来记录插值结果
cout<<"通过拟合得到的拉格朗日多项式为:"<<endl;
for (int i=0;i<3;i++)
{
denominator_coefficient=1;
cout<<y[i]<<"*";
for (int j=0;j<3;j++)
{
if (i==j)
continue;
cout<<"("<<"x-"<<x[j]<<")";
}
cout<<"/";
for (int j=0;j<3;j++)
{
if (i==j)
continue;
denominator_coefficient*=(x[i]-x[j]);
}
cout<<denominator_coefficient<<"*"<<"("<<"x-"<<x[i]<<")";
if (i<3)
{
cout<<"+";
}
}
cout<<endl;
cout<<"请输入需要插值的x:";
cin>>input_x;
for (int i=0;i<3;i++)
{
numerator_cofficient=1;
denominator_coefficient=1;
for (int j=0;j<3;j++)
{
if (i==j)
continue;
numerator_cofficient*=(input_x-x[j]);
}
for (int j=0;j<3;j++)
{
if (i==j)
continue;
denominator_coefficient*=(x[i]-x[j]);
}
result+=(y[i]*numerator_cofficient/denominator_coefficient);
}
cout<<"插值结果为:"<<setiosflags(ios::fixed)<<setprecision(10)<<result<<endl;
cout<<"函数的真实值:"<<sin(0.3367)<<endl;
cout<<"计算误差为:"<<100*(abs(result-sin(0.3367))/sin(0.3367))<<"%"<<endl;
return 0;
}

拉格朗日插值法(c++)的更多相关文章
- Matlab数值计算示例: 牛顿插值法、LU分解法、拉格朗日插值法、牛顿插值法
本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);gr ...
- 拉格朗日插值法——用Python进行数值计算
插值法的伟大作用我就不说了.... 那么贴代码? 首先说一下下面几点: 1. 已有的数据样本被称之为 "插值节点" 2. 对于特定插值节点,它所对应的插值函数是必定存在且唯一的(关 ...
- CPP&MATLAB实现拉格朗日插值法
开始学习MATLAB(R和Python先放一放...),老师推荐一本书,看完基础就是各种算法...首先是各种插值.先说拉格朗日插值法,这原理楼主完全不懂的,查的维基百科,好久才看懂.那里讲的很详细,这 ...
- codeforces 622F. The Sum of the k-th Powers 拉格朗日插值法
题目链接 求sigma(i : 1 to n)i^k. 为了做这个题这两天真是补了不少数论, 之前连乘法逆元都不知道... 关于拉格朗日插值法, 我是看的这里http://www.guokr.com/ ...
- bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法
4559: [JLoi2016]成绩比较 Time Limit: 20 Sec Memory Limit: 256 MBSubmit: 261 Solved: 165[Submit][Status ...
- 集训DAYn——拉格朗日插值法
看zzq大佬的博客,看到了这个看似很深奥的东西,实际很简单(反正比FFT简单,我是一个要被FFT整疯了的孩子) 拉格朗日插值法 是什么 可以找到一个多项式,其恰好在各个观测点取到观测到的值.这样的多项 ...
- 牛客网多校训练第一场 F - Sum of Maximum(容斥原理 + 拉格朗日插值法)
链接: https://www.nowcoder.com/acm/contest/139/F 题意: 分析: 转载自:http://tokitsukaze.live/2018/07/19/2018ni ...
- 【BZOJ3453】XLkxc [拉格朗日插值法]
XLkxc Time Limit: 20 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 给定 k,a,n,d,p f(i ...
- Educational Codeforces Round 7 F. The Sum of the k-th Powers 拉格朗日插值法
F. The Sum of the k-th Powers 题目连接: http://www.codeforces.com/contest/622/problem/F Description Ther ...
- [国家集训队] calc(动规+拉格朗日插值法)
题目 P4463 [国家集训队] calc 集训队的题目真是做不动呀\(\%>\_<\%\) 朴素方程 设\(f_{i,j}\)为前\(i\)个数值域\([1,j]\),且序列递增的总贡献 ...
随机推荐
- 2019-07-24 Smarty模板引擎的简单应用
smarty是什么? Smarty是一个使用PHP写出来的模板引擎,是业界最著名的PHP模板引擎之一.Smarty分离了逻辑代码和外在的内容,提供一种易于管理和使用的方法,用来将原本与HTML代码混杂 ...
- wamp基本配置与设置外网访问
wamp安装(都是一键安装)正常启动后,做一些基本配置的介绍: 1.打开rewrite_module,方法一:左键点击wamp图标,鼠标移至Apache,然后平移至Apache模块,勾选rewrite ...
- RSA算法一:数学原理
- 【函数】wm_concat包的订制
[函数]wm_concat包的订制 1 BLOG文档结构图 2 前言部分 2.1 导读和注意事项 各位技术爱好者,看完本文后,你可以掌握如下的技能,也可以学到一些其它你所不知道 ...
- ELK Stack部署
部署ELK Stack 官网:https://www.elastic.co 环境准备: ip hostname 服务 用户.组 192.168.20.3 node2003 kibana6.5,file ...
- thymeleaf教程-springboot项目中实现thymeleaf自定义标签
转载: http://www.9191boke.com/466119140.html 91博客网 开始: 在使用thymeleaf的过程中有时候需要公共部分渲染页面,这个时候使用自定义标签实现自 ...
- MySQL/MariaDB数据库的各种日志管理
MySQL/MariaDB数据库的各种日志管理 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.事务日志 (transaction log) 1>.Innodb事务日志相 ...
- cmdb资产管理2
新增资产 现在api服务端已经能获取到我们要做的操作了.接下来应该是补充获取操作后对应的程序编写 我们要做的是把post请求发过来的数据保存到数据库.我们创建repository 名字的app,并设计 ...
- 对字符串'//*[@]/div/p/a[1]/c[2]/a[3]/b'从右向左依次删除指定字符串
import re s='//*[@]' a=s+'/div/p/a[1]/c[2]/a[3]/b' c=[1,2] b=a.split(s) #切割 c=b[1].split('/') #切割 d= ...
- Vue的参数请求与传递
Vue不同模板之间的参数传递 页面路由带参数的跳转: 参数接收: Vue向服务器请求资源的两种方式 VUE-RESOURCE 1.Vue.js是数据驱动的,这使得我们并不需要直接操作DOM,如果我们不 ...