Look Further to Recognize Better: Learning Shared Topics and Category-Specific Dictionaries for Open-Ended 3D Object Recognition
张宁 Look Further to Recognize Better: Learning Shared Topics and Category-Specific Dictionaries for Open-Ended 3D Object Recognition
进一步看待以更好地识别:学习共享主题和类别专用词典以进行开放式3D对象识别
S. Hamidreza Kasaei
链接:https://pan.baidu.com/s/1HhvMLljfNdzvYrw7p9yk0A
提取码:b1gf
Abstract—Service robots are expected to operate effectively in human-centric environments for long periods of time. In such realistic scenarios, fine-grained object categorization is as important as basic-level object categorization. We tackle this problem by proposing an open-ended object recognition approach which concurrently learns both the object categories and the local features for encoding objects. In this work, each object is represented using a set of general latent visual topics and category-specific dictionaries. The general topics encode the common patterns of all categories, while the category-specific dictionary describes the content of each category in details. The proposed approach discovers both sets of general and specific representations in an unsupervised fashion and updates them incrementally using new object views. Experimental results show that our approach yields significant improvements over the previous state-of-the-art approaches concerning scalability and object classification performance. Moreover, our approach demonstrates the capability of learning from very few training examples in a real-world setting. Regarding computation time, the best result was obtained with a Bag-of-Words method followed by a variant of the Latent Dirichlet Allocation approach.
服务机器人有望在以人为本的环境中长期有效运行。 在这种现实情况下,细粒度的对象分类与基本级别的对象分类一样重要。我们通过提出一种开放式对象识别方法来解决此问题,该方法同时学习对象类别和用于编码对象的局部特征。在这项工作中,每个对象都使用一组通用的潜在视觉主题和特定类别的词典来表示。实验结果表明,与以前有关可伸缩性和对象分类性能的最新方法相比,我们的方法取得了显着改进。此外,我们的方法展示了在实际环境中从很少的训练示例中学习的能力。 关于计算时间,最好的方法是用词袋法,然后再加上潜在的狄利克雷分配法。
Look Further to Recognize Better: Learning Shared Topics and Category-Specific Dictionaries for Open-Ended 3D Object Recognition的更多相关文章
- The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near
The Brain vs Deep Learning Part I: Computational Complexity — Or Why the Singularity Is Nowhere Near ...
- Metric Learning度量学习:**矩阵学习和图学习
DML学习原文链接:http://blog.csdn.net/lzt1983/article/details/7884553 一篇metric learning(DML)的综述文章,对DML的意义.方 ...
- zhuan 常用图像数据集:标注、检索
目录(?)[+] 1.搜狗实验室数据集: http://www.sogou.com/labs/dl/p.html 互联网图片库来自sogou图片搜索所索引的部分数据.其中收集了包括人物.动物. ...
- 【机器学习】【计算机视觉】非常全面的图像数据集《Actions》
目录(?)[+] 1.搜狗实验室数据集: http://www.sogou.com/labs/dl/p.html 互联网图片库来自sogou图片搜索所索引的部分数据.其中收集了包括人物.动物.建筑 ...
- [转] CVonline: Image Databases
转自:CVonline by Robert Fisher 图像数据库 Index by Topic Action Databases Biological/Medical Face Databases ...
- CVPR 2017 Paper list
CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View ...
- 三维计算机视觉 — 中层次视觉 — Point Pair Feature
机器人视觉中有一项重要人物就是从场景中提取物体的位置,姿态.图像处理算法借助Deep Learning 的东风已经在图像的物体标记领域耍的飞起了.而从三维场景中提取物体还有待研究.目前已有的思路是先提 ...
- ICCV 2017论文分析(文本分析)标题词频分析 这算不算大数据 第一步:数据清洗(删除作者和无用的页码)
IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEE ...
- PCL点云配准(1)
在逆向工程,计算机视觉,文物数字化等领域中,由于点云的不完整,旋转错位,平移错位等,使得要得到的完整的点云就需要对局部点云进行配准,为了得到被测物体的完整数据模型,需要确定一个合适的坐标系,将从各个视 ...
随机推荐
- ztree的添加、修改、删除及前后台交互
一.引入资源下载并引入ztree的相关js,css和img等.http://www.treejs.cn/v3/api.php ztree的核心代码jquery.ztree.core.jsztree关于 ...
- 第三篇 -- XML Schema
验证XML文档是否符合议定的XML结构有两种方法,分别是DTD模式与XML Schema.本文主要介绍XML Schema. 一.XML Schema的优点 XML Schema基于XML,没有专门的 ...
- DT企业新闻也叫公司新闻简介调取方案
今天我们讲的是企业新闻简介的事,由于destoon官方比较懒,企业新闻没有开发这个截字功能,我们就变通思维直接调取内容前100字,但是由于企业新闻是2个不同的 表,所以我们必须做点小事, 就是写点p ...
- li的inline-block出现间隙原因,解决方案
<style type="text/css"> body{ margin:0 0; padding:0 0; font-size: 14; text-decoratio ...
- live-pusher属性值的改变
例如:组件推流过程中,切换前后摄像头时,要改变mirror的值并使其生效: LivePusherContext = wx.createLivePusherContext() 1. LivePusher ...
- xpath用发
xpath的更多语法: https://docs.microsoft.com/zh-cn/previous-versions/dotnet/netframework-2.0/ms256039(v=vs ...
- 注解 @EnableFeignClients 工作原理
概述在Spring cloud应用中,当我们要使用feign客户端时,一般要做以下三件事情 : 使用注解@EnableFeignClients启用feign客户端:示例 : @SpringBootAp ...
- 项目(1-1)ES32获取mpu9250数据网页交互显示
教程 https://www.hackster.io/donowak/esp32-mpu9250-3d-orientation-visualisation-467dc1 项目地址 https://gi ...
- [React] Fix "React Error: Rendered fewer hooks than expected"
In this lesson we'll see an interesting situation where we're actually calling a function component ...
- [RN] React Navigation 使用中遇到的显示 问题 汇总
React Navigation 使用中遇到的显示 问题 汇总 https://www.jianshu.com/p/8b1f18affc5d