题意

给定长度为\(n\)的数组\(a\),其中任意\(a_i \leq x\)

定义\(f(l,r)\)为删除\(a\)中值域在\([l,r]\)的数后剩余的数组.

统计满足\(1\leq l \leq r \leq x\)且\(f(l,r)\)是非严格不下降序列的数对\((l,r)\)的数量。

题解

首先想想就可以发现这个\(l\)和\(r\)是有单调性的。那思路就可以往双指针/二分那边靠一下。

现在的问题就是怎么做到\(O(1)\)或者\(O(\log n)\) 判断删除一段区间后的序列是否合法。

把最后的序列拆成两段:权值在\((1,l-1)\)和权值在\((r+1,x)\)的。

发现只需要\((1,l-1)\)这段满足按权值排序后下标单调上升,\((r+1,x)\)这段同理,并且\(l-1\)的下标比\(r+1\)的下标小。

那么这个东西其实是可以预处理出来的。

考虑处理出\(posmax\)和\(posmin\)表示数字\(i\)出现的最小下标和最大下标,\(premax\)和\(sufmin\)表示按权值排序后\(1-i\)的最大下标 和 按权值排序后\(i-x\)的最小下标。

依靠上面预处理出来的数据我们就可以再处理出一个\(precan\)和\(sufcan\)表示\((1,i)\)是否合法以及\((i,x)\)是否合法,那么就可以\(O(1)\)判断删除一段区间后的序列是否合法了。

使用双指针就可以做到\(O(n)\)解决。

#include <bits/stdc++.h>
using namespace std; namespace io {
char buf[1<<21], *p1 = buf, *p2 = buf;
inline char gc() {
if(p1 != p2) return *p1++;
p1 = buf;
p2 = p1 + fread(buf, 1, 1 << 21, stdin);
return p1 == p2 ? EOF : *p1++;
}
#define G gc #ifndef ONLINE_JUDGE
#undef G
#define G getchar
#endif template<class I>
inline void read(I &x) {
x = 0; I f = 1; char c = G();
while(c < '0' || c > '9') {if(c == '-') f = -1; c = G(); }
while(c >= '0' && c <= '9') {x = x * 10 + c - '0'; c = G(); }
x *= f;
} template<class I>
inline void write(I x) {
if(x == 0) {putchar('0'); return;}
I tmp = x > 0 ? x : -x;
if(x < 0) putchar('-');
int cnt = 0;
while(tmp > 0) {
buf[cnt++] = tmp % 10 + '0';
tmp /= 10;
}
while(cnt > 0) putchar(buf[--cnt]);
} #define in(x) read(x)
#define outn(x) write(x), putchar('\n')
#define out(x) write(x), putchar(' ') } using namespace io; #define ll long long
const int N = 1000100;
const int inf = 1e9; int n, x;
int a[N]; int posmn[N], posmx[N];
//每个大小的数的最左端点和最右端点
int sufmn[N], premx[N];
//从大到小/从小到大的max和min位置
bool sufcan[N], precan[N];
//保留i到x这段是否合法,保留1到i这段是否合法 bool check(int l, int r) {
if(!precan[l - 1]) return false;
if(!sufcan[r + 1]) return false;
if(sufmn[r + 1] < premx[l - 1]) return false;
return true;
} int main() {
read(n); read(x);
memset(posmn, 0x3f, sizeof(posmn));
for(int i = 1; i <= n; ++i) read(a[i]); for(int i = 1; i <= n; ++i) {
posmn[a[i]] = min(posmn[a[i]], i);
posmx[a[i]] = max(posmx[a[i]], i);
}
sufmn[x + 1] = inf;
for(int i = 1; i <= x; ++i) premx[i] = max(premx[i - 1], posmx[i]);
for(int i = x; i; --i) sufmn[i] = min(sufmn[i + 1], posmn[i]);
sufcan[x + 1] = precan[0] = true;
for(int i = 1; i <= x; ++i) precan[i] = precan[i - 1] && (premx[i - 1] < posmn[i]);
for(int i = x; i; --i) sufcan[i] = sufcan[i + 1] && (posmx[i] < sufmn[i + 1]); ll sum = 0;
int l = 1, r = 1;
for(; l <= x; ++l) {
if(l > r) ++r;
while(r < x && !check(l, r)) ++r;
if(check(l, r)) sum += x - r + 1;
} outn(sum);
return 0;
}

CF1167E. Range Deleting的更多相关文章

  1. Codeforces 1167 E Range Deleting 双指针+思维

    题意 给一个数列\(a​\),定义\(f(l,r)​\)为删除\(a​\)中所有满足\(l<=a_i<=r​\)的数后的数列,问有多少对\((l,r)​\),使\(f(l,r)​\)是一个 ...

  2. Educational Codeforces Round 65 (Rated for Div. 2) E. Range Deleting(思维+coding)

    传送门 参考资料: [1]:https://blog.csdn.net/weixin_43262291/article/details/90271693 题意: 给你一个包含 n 个数的序列 a,并且 ...

  3. 1167E - Range Deleting 双指针

    题意:给出n个数的序列,并给出x,这n个数的范围为[1,x],f(L,R)表示删除序列中取值为[l,r]的数,问有几对L,R使得操作后的序列为非递减序列 思路:若[l,r]成立,那么[l,r+1],. ...

  4. Educational Codeforces Round 65 (Rated for Div. 2)题解

    Educational Codeforces Round 65 (Rated for Div. 2)题解 题目链接 A. Telephone Number 水题,代码如下: Code #include ...

  5. [ Educational Codeforces Round 65 (Rated for Div. 2)][二分]

    https://codeforc.es/contest/1167/problem/E E. Range Deleting time limit per test 2 seconds memory li ...

  6. codeforces Educational Codeforces Round 65 (补完)

    C News Distribution 并查集水题 D Bicolored RBS 括号匹配问题,如果给出的括号序列nesting depth为n,那么最终可以分成两个nesting depth为n ...

  7. Educational Codeforces Round 65 E,F

    E. Range Deleting 题意:给出一个序列,定义一个操作f(x,y)为删除序列中所有在[x,y]区间内的数.问能使剩下的数单调不减的操作f(x,y)的方案数是多少. 解法:不会做,思维跟不 ...

  8. Educational Codeforces Round 65 选做

    好久没更博客了,随便水一篇 E. Range Deleting 题意 给你一个长度为 \(n\) 的序列 \(a_1,a_2,\dots a_n\) ,定义 \(f(l,r)\) 为删除 \(l\le ...

  9. Codeforces Edu Round 65 A-E

    A. Telephone Number 跟之前有一道必胜策略是一样的,\(n - 10\)位之前的数存在\(8\)即可. #include <iostream> #include < ...

随机推荐

  1. windwos 安装 vue-cli

    安装vue-cli 安装之前我们需要先安装node.js以及包管理工具npm,有兴趣的可以安装nvm版本管理工具 地址:https://www.cnblogs.com/lph970417/p/1184 ...

  2. springboot2 配置 https

    package cn.xiaojf.aibus.configure; import org.apache.catalina.Context; import org.apache.catalina.co ...

  3. pipeline的添加顺序和执行顺序

    原文链接:https://www.cnblogs.com/ruber/p/10186571.html 本文只想讨论一下pipeline的执行顺序问题,因为这个搞不明白就不知道先添加编码还是解码,是不是 ...

  4. 腾讯明眸极速高清升级2.0,助力韩国赛事超高清5G直播

    近期,由腾讯云联合韩国CUDO通信研究所及intel推出的tile方式的viewport流服务编码,已正式通过测试.届时韩国最新5G网络将基于腾讯明眸-极速高清2.0和腾讯云直播产品能力,在韩国国内率 ...

  5. springboot整合mybatis,mongodb,redis

    springboot整合常用的第三方框架,mybatis,mongodb,redis mybatis,采用xml编写sql语句 mongodb,对MongoTemplate进行了封装 redis,对r ...

  6. [转帖]Linux教程(13)- Linux中的通配符和正则表达式

    Linux教程(13)- Linux中的通配符和正则表达式 2018-08-22 06:16:44 钱婷婷 阅读数 39更多 分类专栏: Linux教程与操作 Linux教程与使用   版权声明:本文 ...

  7. 函数内部声明变量的时候,一定要使用var命令。如果不用的话,你实际上声明了一个全局变量!闭包访问局部变量

    函数内部声明变量的时候,一定要使用var命令.如果不用的话,你实际上声明了一个全局变量! function f1(){ n=999; } f1(); alert(n); 子函数可以一层一层读取到父元素 ...

  8. proxy_banner

  9. Kafka 初识

    1.Kafka 是什么? 用一句话概括一下:Apache Kafka 是一款开源的消息引擎系统. 倘若“消息引擎系统“这个词对你来说有点陌生的话,那么“消息队列“.“消息中间件”的提法想必你一定是有所 ...

  10. Go语言变量的初始化

    正如上一节<Go语言变量声明>中提到的 Go语言在声明变量时,自动对变量对应的内存区域进行初始化操作.每个变量会初始化其类型的默认值,例如: 整型和浮点型变量的默认值为 0. 字符串变量的 ...