洛谷1169 [ZJOI2007] 棋盘制作
题意概述:给出由0 1构成的矩阵,求没有0 1 相邻的最大子矩阵的最大子正方形。
解题思路:设f[i][j]表示i j向上能到哪,l[i][j] r[i][j]表示向左/右,转移时分开计算矩形和正方形即可。
#include<cstring>
#include<iostream>
#include<cctype>
#include<cstdio>
#include<algorithm>
using namespace std;
inline int read()
{
register int X=;register char ch=;bool flag=;
for(;!isdigit(ch);ch=getchar()) if(ch=='-') flag=;
for(;isdigit(ch);ch=getchar()) X=(X<<)+(X<<)+ch-'';
return (flag ? -X : X);
}
inline void write(int x)
{
if(x>) write(x/);
putchar(x%+'');
}
const int N=;
int l[N][N],r[N][N],f[N][N],n,m,a[N][N],ans1=,ans2=;
int min(const int x,const int y){return (x < y ? x : y);}
int max(const int x,const int y){return (x < y ? y : x);}
int main()
{
n=read(),m=read();
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
a[i][j]=read(),l[i][j]=r[i][j]=(j== ? : j),f[i][j]=;
for(int i=;i<=n;i++)
{
for(int j=;j<=m;j++)
if(a[i][j] != a[i][j-])
l[i][j]=l[i][j-];
for(int j=m-;j>=;j--)
if(a[i][j] != a[i][j+])
r[i][j]=r[i][j+];
}
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
if(i > && a[i][j] != a[i-][j])
l[i][j]=max(l[i][j],l[i-][j]),r[i][j]=min(r[i][j],r[i-][j]),f[i][j]=f[i-][j]+;
int k=r[i][j]-l[i][j]+,h=min(k,f[i][j]);
ans1=max(ans1,k*f[i][j]);
ans2=max(ans2,h*h);
}
write(ans2),putchar('\n'),write(ans1);
}
洛谷1169 [ZJOI2007] 棋盘制作的更多相关文章
- BZOJ1057或洛谷1169 [ZJOI2007]棋盘制作
BZOJ原题链接 洛谷原题链接 设\(L[i][j],R[i][j],H[i][j]\)表示点\((i,j)\)向左.右.上尽量拓展的左端点.右端点.上端点的坐标. \(L,R\)直接初始化好,\(H ...
- 洛谷 P1169 [ZJOI2007]棋盘制作
2016-05-31 14:56:17 题目链接: 洛谷 P1169 [ZJOI2007]棋盘制作 题目大意: 给定一块矩形,求出满足棋盘式黑白间隔的最大矩形大小和最大正方形大小 解法: 神犇王知昆的 ...
- 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划
P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...
- 【题解】洛谷P1169 [ZJOI2007] 棋盘制作(坐标DP+悬线法)
次元传送门:洛谷P1169 思路 浙江省选果然不一般 用到一个从来没有听过的算法 悬线法: 所谓悬线法 就是用一条线(长度任意)在矩阵中判断这条线能到达的最左边和最右边及这条线的长度 即可得到这个矩阵 ...
- 洛谷 P1169 [ZJOI2007]棋盘制作 (悬线法)
和玉蟾宫很像,条件改成不相等就行了. 悬线法题目 洛谷 P1169 p4147 p2701 p1387 #include<cstdio> #include<algorithm& ...
- [洛谷P1169] [ZJOI2007] 棋盘制作 解题报告(悬线法+最大正方形)
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个 8×8 大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳. 而我 ...
- 洛谷P1169[ZJOI2007]棋盘制作
题目 一道悬线法的裸题,悬线法主要是可以处理最大子矩阵的问题. 而这道题就是比较经典的可以用悬线法来处理的题. 而悬线法其实就是把矩阵中对应的每个位置上的元素分别向左向上向右,寻找到不能到达的地方,然 ...
- Luogu 1169 [ZJOI2007]棋盘制作 - 动态规划+单调栈
Description 给一个01矩阵, 求出最大的01交错的正方形和最大的01交错的矩阵 Solution 用动态规划求出最大的正方形, 用单调栈求出最大的矩阵. 在这里仅介绍求出最大正方形(求最大 ...
- luogu 1169 [ZJOI2007]棋盘制作 悬线dp
悬线法,虽然得不到局部最优解,但是一定能得到全局最优解的算法,十分神奇~ #include <cstdio> #include <algorithm> #define N 20 ...
随机推荐
- 整理:WPF中应用附加事件制作可以绑定命令的其他事件
原文:整理:WPF中应用附加事件制作可以绑定命令的其他事件 目的:应用附加事件的方式定义可以绑定的事件,如MouseLeftButton.MouseDouble等等 一.定义属于Control的附加事 ...
- 详解JS与Jquery获得的对象的区别与联系
世上无难事只怕有心人,敲代码也一样只要你用心去搞懂一件事,即使一个小小的用法对你以后也会有很大的作用: 项目虽然赶得紧但是有些问题百度找完答案解决之后,也要自己梳理一遍做到心领神会!!!今天就直接来上 ...
- 简单了解Eureka
1.Eureka简介 Eureka是Spring Cloud Netflix微服务套件中的一部分,是一套成熟的服务注册和发现组件,可以与Springboot构建的微服务很容易的整合起来. Eureka ...
- English--动词语态
English|动词语态 动词的语态在理解长难句中很重要.了解被动语态与主动语态,掌握语态的变化方式. 前言 目前所有的文章思想格式都是:知识+情感. 知识:对于所有的知识点的描述.力求不含任何的自我 ...
- vuex简单化理解和安装使用
1.简单化理解 首先你要明白 vuex 的目的 就是为了 集中化的管理项目中 组件所有的 数据状态 (state) 0. 第一步你要明白 , store 的重要性 , store 类似一个中央基站, ...
- 06-Vue路由
什么是路由 对于普通的网站,所有的超链接都是URL地址,所有的URL地址都对应服务器上对应的资源: 对于单页面应用程序来说,主要通过URL中的hash(#号)来实现不同页面之间的切换,同时,hash有 ...
- windows系统将Tomcat将控制台的日志重定向到日志文件
1 . 修改startup.bat 将 56 行注释,加上一行: call "%EXECUTABLE%" run %CMD_LINE_ARGS% >> ..\logs\ ...
- jmeter 实现登录参数化
业务场景 在测试过程中,一般需要模拟不同的用户登录,这样压测的数据比较平均,也能更好的模拟真实的压力情况. 如果使用同一个用户账号进行测试,那么比如在查询代办的时候,此人的待办太多,也不符合实际的情况 ...
- zookeeper,及k8s基础概念
1.描述zookeeper集群中leader,follower,observer几种角色 Zookeeper: 分布式系统:是一个硬件或软件组件分布在网络中的不同的计算机之上,彼此间仅通过消息传递进行 ...
- Windows系统下安装VirtualBox及安装Ubuntu16.04
1.软件介绍 VirtualBox VirtualBox 是一款免费的开源虚拟机软件,所谓虚拟机软件,就是能够提供各种模拟的硬件环境,并且在其上安装各种操作系统,目前支持Window,Linux,Ma ...