Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks

2019-06-01 09:52:46

Paperhttp://openaccess.thecvf.com/content_cvpr_2018/papers/Gupta_Social_GAN_Socially_CVPR_2018_paper.pdf

Codehttps://github.com/agrimgupta92/sgan

1. 背景与动机:

本文尝试用 RNN based GAN 来进行行人轨迹的预测,如上图所示。前人的工作主要存在如下的两个缺点:

1). 他们仅建模了近邻的行人,所以,他们无法高校的建模一个场景中所有人的交互。

2). 他们用常见的损失函数来最小化 GT 和 预测的结果之间的欧氏距离,来尝试去学习 “average behavior”。

本文的目标是学习多个 “Good Behaviors”,即,多个社交上可接受的轨迹。

2. 算法设计

如下图所示,本文尝试用 GAN 的方法来建模该问题。

给定初始的轨迹,作者用 LSTM 来进行编码,然后得到向量化的表达,并且用 Pooling module 来进行信息的交互,然后将交互后的信息,输入到解码器(另一个 LSTM 模型)。至此,GAN 中的 generator 部分算是完成了,我们就得到了预测的轨迹结果。然后我们将该轨迹,输入到判别器中(即,之前的 encoder),进行是真是假的判断。

3. 主要创新点:

整个流程下来,作者总结其创新点为:Pool module 以及 多样化的样本生成

3.1 关于 Pooling module

为了联合的进行多个行人的推理,我们需要一种机制来在多个 LSTM 模型进行信息共享。Social Pooling 通过 grid based pooling 机制来解决该问题。然而,这种方法速度很慢,并且无法捕获全局内容。

如图 2 所示,这可以通过将输入的坐标传送到多层感知机,然后一个 symmetric function(作者用的是 Max-Pooling)来解决。

3.2 估计多样性的样本生成

4. Experiment:

Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks的更多相关文章

  1. 文献阅读报告 - Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks

    paper:Gupta A , Johnson J , Fei-Fei L , et al. Social GAN: Socially Acceptable Trajectories with Gen ...

  2. 生成对抗网络(Generative Adversarial Networks,GAN)初探

    1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处.换句话 ...

  3. Generative Adversarial Networks,gan论文的畅想

    前天看完Generative Adversarial Networks的论文,不知道有什么用处,总想着机器生成的数据会有机器的局限性,所以百度看了一些别人 的看法和观点,可能我是机器学习小白吧,看完之 ...

  4. 生成对抗网络(Generative Adversarial Networks, GAN)

      生成对抗网络(Generative Adversarial Networks, GAN)是一种深度学习模型,是近年来复杂分布上无监督学习最具前景的学习方法之一.   GAN 主要包括了两个部分,即 ...

  5. 论文解读(GAN)《Generative Adversarial Networks》

    Paper Information Title:<Generative Adversarial Networks>Authors:Ian J. Goodfellow, Jean Pouge ...

  6. StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks 论文笔记

    StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks  本文将利 ...

  7. 论文笔记之:Semi-Supervised Learning with Generative Adversarial Networks

    Semi-Supervised Learning with Generative Adversarial Networks 引言:本文将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器来输出类 ...

  8. Paper Reading: Perceptual Generative Adversarial Networks for Small Object Detection

    Perceptual Generative Adversarial Networks for Small Object Detection 2017-07-11  19:47:46   CVPR 20 ...

  9. (转)Introductory guide to Generative Adversarial Networks (GANs) and their promise!

    Introductory guide to Generative Adversarial Networks (GANs) and their promise! Introduction Neural ...

随机推荐

  1. IDEA 显示Run Dashboard窗口的2种方式

    前言:在基于spring boot构建spring cloud微服务架构的时候,一般需要启动多个应用程序,在idea开发工具中,多个同时启动的应用可以在Run Dashboard运行仪表盘中得到更好的 ...

  2. Kubernetes-Istio之Sidecar自动注入

    前提: (官方提供) 1):确认使用的是Kubernetes服务器的受支持版本( 1.13.1.14.1.15):kubectl (官方提供,应该是1.13版本以上,我的是1.16版本) kubect ...

  3. Linux命令——lspci

    参考:7 Linux lspci Command Examples to Get PCI Bus Hardware Device Info 简介 lspci可以看成“ls” + “pci”.lspci ...

  4. 过采样中用到的SMOTE算法

    平时很多分类问题都会面对样本不均衡的问题,很多算法在这种情况下分类效果都不够理想.类不平衡(class-imbalance)是指在训练分类器中所使用的训练集的类别分布不均.比如说一个二分类问题,100 ...

  5. 神经网络(8)---如何求神经网络的参数:cost function的表达

    两种分类问题: binary & multi-class 下面的是两种类型的分类问题(一种是binary classification,一种是multi-class classificatio ...

  6. git教程——简单总结

    1 创建版本库: 初始化一个Git仓库,使用git init命令. 添加文件到Git仓库,分两步: (1)使用命令git add <file>,注意,可反复多次使用,添加多个文件: (2) ...

  7. python读取excel的内容

    import csvimport xlrdimport xlwt def handler_excel(filename=r'd:\\wu.xlsx'): # 打开文件 workbook = xlrd. ...

  8. c#嵌套CMD窗口

    解决方法一: 自己放一个文本框,改成黑色,然后输入命令,执行时,你Process.Start cmd ,此时CMD窗口不显示,然后,将CMD的返回值,再取出来,设回文本框. 如何用这种方法实时获取cm ...

  9. P4462 [CQOI2018]异或序列 莫队

    题意:给定数列 \(a\) 和 \(k\) ,询问区间 \([l,r]\) 中有多少子区间满足异或和为 \(k\). 莫队.我们可以记录前缀异或值 \(a_i\),修改时,贡献为 \(c[a_i\bi ...

  10. linux 登录后有时候会出现-bash-4.1$

    转载自https://blog.csdn.net/jiedao_liyk/article/details/78470498 linux登录后有时候会出现-bash-4.1$ 造成这样的原因: 与这个用 ...