题意

设\(f(n)=\sum\limits_{i=1}^{a}\sum\limits_{j=1}^{b}[gcd(i,j)==n],F(n)=\sum\limits_{n|d}f(d)\)

发现\(F(n)=\frac{a}{n}*\frac{b}{n}\),可以理解为对\(a\)以内的所有\(k*n\)都和\(b\)以内的\(k*n\)配对了一次。

由莫比乌斯反演:

\(f(n)=\sum\limits_{n|d}\mu(\frac{d}{n})F(d)\)

\(f(n)=\sum\limits_{n|d}\mu(\frac{d}{n})\frac{a}{d}*\frac{b}{d}\)

设\(t=\frac{d}{n}\)。

\(f(n)=\sum\limits_{t=1}^{min(\frac{a}{d},\frac{b}{d})}\mu(t)\frac{a}{t*n}\frac{b}{t*n}\)

\(ans=f(d)\)

除法分块即可。

code:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=50010;
int T;
int mu[maxn],sum[maxn];
ll a,b,d;
bool vis[maxn];
vector<int>prime;
inline void shai(int n)
{
vis[1]=1;mu[1]=1;
for(int i=2;i<=n;i++)
{
if(!vis[i])prime.push_back(i),mu[i]=-1;
for(unsigned int j=0;j<prime.size()&&i*prime[j]<=n;j++)
{
vis[i*prime[j]]=1;
if(i%prime[j]==0){mu[i*prime[j]]=0;break;}
mu[i*prime[j]]=-mu[i];
}
}
for(int i=1;i<=n;i++)sum[i]=sum[i-1]+mu[i];
}
inline ll solve(ll a,ll b,ll d)
{
ll n=min(a/d,b/d),res=0;
for(int l=1,r;l<=n;l=r+1)
{
r=min(a/(a/l),b/(b/l));
res+=(a/(l*d))*(b/(l*d))*(sum[r]-sum[l-1]);
}
return res;
}
int main()
{
shai(50000);
scanf("%d",&T);
while(T--)
{
scanf("%lld%lld%lld",&a,&b,&d);
printf("%lld\n",solve(a,b,d));
}
return 0;
}

luoguP3455 [POI2007]ZAP-Queries的更多相关文章

  1. BZOJ 1101: [POI2007]Zap

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2262  Solved: 895[Submit][Status] ...

  2. [BZOJ1101][POI2007]Zap

    [BZOJ1101][POI2007]Zap 试题描述 FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd ...

  3. BZOJ 1101: [POI2007]Zap( 莫比乌斯反演 )

    求 answer = ∑ [gcd(x, y) = d] (1 <= x <= a, 1 <= y <= b) . 令a' = a / d, b' = b / d, 化简一下得 ...

  4. BZOJ1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2951  Solved: 1293[Submit][Status ...

  5. 莫比乌斯反演学习笔记+[POI2007]Zap(洛谷P3455,BZOJ1101)

    先看一道例题:[POI2007]Zap BZOJ 洛谷 题目大意:$T$ 组数据,求 $\sum^n_{i=1}\sum^m_{j=1}[gcd(i,j)=k]$ $1\leq T\leq 50000 ...

  6. [POI2007]Zap

    bzoj 1101: [POI2007]Zap Time Limit: 10 Sec  Memory Limit: 162 MB[Submit][Status][Discuss] Descriptio ...

  7. Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...

  8. BZOJ1101 POI2007 Zap 【莫比乌斯反演】

    BZOJ1101 POI2007 Zap Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b, ...

  9. 1101: [POI2007]Zap(莫比乌斯反演)

    1101: [POI2007]Zap Time Limit: 10 Sec Memory Limit: 162 MB Description FGD正在破解一段密码,他需要回答很多类似的问题:对于给定 ...

  10. 【BZOJ】1101: [POI2007]Zap(莫比乌斯+分块)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1101 无限膜拜数论和分块orz 首先莫比乌斯函数的一些性质可以看<初等数论>或<具 ...

随机推荐

  1. go tcp通信

    ----tcp 客户端 package main import ( "net" "fmt" ) func main() { conn,err := net.Di ...

  2. go语言的redis客户端

    redis3.0之后提供了新的HA的解决方案,即Cluster模式,由多个节点组成的集群模式.集群master之间基于crc16算法,对key进行校验,得到的值对16384取余,就是key的hash ...

  3. Docker 简单发布dotnet core项目 图文版

    原文:https://www.cnblogs.com/chuankang/p/9474591.html docker发布dotnet core简单流程 需要结合这个版本看哈 地址:https://ww ...

  4. lograotate 配置常用配置

    目录 lograotate 配置说明 nginx php-fpm tomcat 配置 各种参数说明 lograotate 配置说明 Linux系统默认安装logrotate工具,它默认的配置文件在: ...

  5. Identity Server4资料

    https://www.cnblogs.com/cgzl/p/9405796.html https://www.cnblogs.com/cgzl/p/7780559.html https://clou ...

  6. Spring框架spring-web模块中的RestTemplate类详解

    RestTemplate类是spring-web模块中进行HTTP访问的REST客户端核心类.RestTemplate请求使用阻塞式IO,适合低并发的应用场景. 1. RestTemplate类提供了 ...

  7. 动手学深度学习11- 多层感知机pytorch简洁实现

    多层感知机的简洁实现 定义模型 读取数据并训练数据 损失函数 定义优化算法 小结 多层感知机的简洁实现 import torch from torch import nn from torch.nn ...

  8. 自已开发IM有那么难吗?手把手教你自撸一个Andriod版简易IM (有源码)

    本文由作者FreddyChen原创分享,为了更好的体现文章价值,引用时有少许改动,感谢原作者. 1.写在前面 一直想写一篇关于im即时通讯分享的文章,无奈工作太忙,很难抽出时间.今天终于从公司离职了, ...

  9. Uboot启动流程分析(二)

    1.前言 在前面的文章Uboot启动流程分析(一)中,链接如下: https://www.cnblogs.com/Cqlismy/p/12000889.html 已经简单地分析了low_level_i ...

  10. vue自定义事件---拖拽

    margin布局拖拽 Vue.directive('drag', { bind(el, binding, vnode, oldVnode) { const dialogHeaderEl = el.qu ...