模板 - 数学 - 同余 - 扩展Euclid算法
普通的扩展欧几里得算法,通过了洛谷的扩展欧几里得算法找乘法逆元。修复了容易溢出的bug,虽然新版本仍有可能会溢出longlong,假如参与运算的数字都是longlong,假如可以的话直接使用__int128或者去抄一个RoundGod的BigInt的模板(这里的C题)。事不宜迟明天就抄这个大数模板。
求解模n意义下a的逆元,即求方程LCE2(a,1,n,x),结果放入x中,返回值指示是否有解。
ll gcd(ll a, ll b) {
if(b == 0)
return a;
while(ll t = a % b)
a = b, b = t;
return b;
}
ll ex_gcd(ll a, ll b, ll& x, ll& y) {
if(b == 0) {
x = 1, y = 0;
return a;
}
ll d = ex_gcd(b, a % b, x, y), t;
t = x, x = y, y = t - a / b * y;
return d;
}
//解线性同余方程 ax + by = c ,无解返回false
bool LCE1(ll a, ll b, ll c, ll &x0, ll &y0) {
ll x, y, d = ex_gcd(a, b, x, y);
if(c % d)
return false;
ll k = b / gcd(a, b);
x0 = ((x % k) * (c / d % k) % k + k) % k;
y0 = (c - a * x0) / b;
//x0是x的最小非负整数解
//x=x0+b*t,y=y0-a*t,是方程的所有解,对所有整数t成立
return true;
}
//解线性同余方程 ax = b mod n ,无解返回false
//和方程 ax + ny = b 等价
bool LCE2(ll a, ll b, ll n, ll &x0) {
ll x, y;
if(LCE1(a, n, b, x, y)) {
ll k = n / gcd(a, n);
x0 = (x % k + k) % k;
//x0是最小非负整数解
//x=x0+k*t,是方程的所有解,对所有整数t成立
return true;
} else
return false;
}
未修复的版本理论上会快一点常数,没必要。但是还是做个提醒:
//解线性同余方程 ax + by = c ,无解返回false
bool LCE1(ll a, ll b, ll c, ll &x0, ll &y0) {
ll x, y, d = ex_gcd(a, b, x, y);
if(c % d)
return false;
ll k = c / d;
x0 = x * k;
y0 = y * k;
//x=x0+b*t,y=y0-a*t,是方程的所有解,对所有整数t成立
return true;
}
模板 - 数学 - 同余 - 扩展Euclid算法的更多相关文章
- 略学扩展Eculid算法
扩展 Euclid 算法 Euclid 算法 辗转相除法 计算两个数最大公因数 \(\text{gcd}(a,\,b) = \text{gcd}(b,\,a\%b)\) exEuclid 算法 裴蜀定 ...
- 2014年百度之星程序设计大赛 - 初赛(第一轮) hdu Grids (卡特兰数 大数除法取余 扩展gcd)
题目链接 分析:打表以后就能发现时卡特兰数, 但是有除法取余. f[i] = f[i-1]*(4*i - 2)/(i+1); 看了一下网上的题解,照着题解写了下面的代码,不过还是不明白,为什么用扩展g ...
- 扩展KMP算法
一 问题定义 给定母串S和子串T,定义n为母串S的长度,m为子串T的长度,suffix[i]为第i个字符开始的母串S的后缀子串,extend[i]为suffix[i]与字串T的最长公共前缀长度.求出所 ...
- (扩展欧几里德算法)zzuoj 10402: C.机器人
10402: C.机器人 Description Dr. Kong 设计的机器人卡尔非常活泼,既能原地蹦,又能跳远.由于受软硬件设计所限,机器人卡尔只能定点跳远.若机器人站在(X,Y)位置,它可以原地 ...
- 欧几里德与扩展欧几里德算法 Extended Euclidean algorithm
欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd( ...
- poj2142-The Balance(扩展欧几里德算法)
一,题意: 有两个类型的砝码,质量分别为a,b;现在要求称出质量为d的物品, 要用多少a砝码(x)和多少b砝码(y),使得(x+y)最小.(注意:砝码位置有左右之分). 二,思路: 1,砝码有左右位置 ...
- poj2115-C Looooops(扩展欧几里德算法)
本题和poj1061青蛙问题同属一类,都运用到扩展欧几里德算法,可以参考poj1061,解题思路步骤基本都一样.一,题意: 对于for(i=A ; i!=B ;i+=C)循环语句,问在k位存储系统中循 ...
- poj1061-青蛙的约会(扩展欧几里德算法)
一,题意: 两个青蛙在赤道上跳跃,走环路.起始位置分别为x,y. 每次跳跃距离分别为m,n.赤道长度为L.两青蛙跳跃方向与次数相同的情况下, 问两青蛙是否有方法跳跃到同一点.输出最少跳跃次数.二,思路 ...
- 最大公约数与欧几里得(Euclid)算法
---恢复内容开始--- 记a, b的最大公约数为gcd(a, b).显然, gcd(a,b)=gcd(|a|,|b|). 计算最大公约数的Euclid算法基于下面定理: [GCD递归定理]对于任意非 ...
随机推荐
- System.Data.Entity.Core.EntityException: 可能由于暂时性失败引发了异常。如果您在连接到 SQL Azure 数据库,请考虑使用 SqlAzureExecutionStrategy。
代码异常描述 ************** 异常文本 **************System.Data.Entity.Core.EntityException: 可能由于暂时性失败引发了异常.如果 ...
- Java调用WebService方法总结(9,end)--Http方式调用WebService
Http方式调用WebService,直接发送soap消息到服务端,然后自己解析服务端返回的结果,这种方式比较简单粗暴,也很好用:soap消息可以通过SoapUI来生成,也很方便.文中所使用到的软件版 ...
- 【转载】 C#中List集合使用First方法查找符合条件的第一个元素
在C#的List集合相关操作中,很多时候需要从List集合中查找出符合条件的第一个元素对象,如果确认在List集合中一定存在符合条件的元素,则可以使用First方法来查找,First方法调用格式为Fi ...
- PHP 结合 Bootstrap 实现学生列表以及添加学生功能实现(继上篇登录及注册功能之后)
本人是一位学生,正在学习当中,可能BUG众多,请见谅并指正,谢谢!!! 学生列表实现 HTML: <!DOCTYPE html> <html> <head> < ...
- JavaScript之控制标签内容
function abb(a){ return document.getElementById(a); } console.log(abb('box').innerHTML); 标签.innerHTM ...
- JS 中Json常用操作
转自: https://www.jianshu.com/p/6501b0f3124f 直接定义json var json = {"name": "小明", &q ...
- sublime的package control的中文镜像
参加: http://packagecontrol.cn/installation
- 【JUC】3.ReentrantLock
ReentrantLock实现Lock接口,所以先看下Lock接口: public interface Lock { // 获得锁 void lock(); // 获得锁 void unlock(); ...
- ASP.NET 取得 Request URL 的各个部分和通过ASP.NET获取URL地址的方法
网址:http://localhost:1897/News/Press/Content.aspx/123?id=1#toc Request.ApplicationPath / Request.Phys ...
- springboot2.1.3+spring-session2.1.4分库处理
使用spring session框架来统一管理session,该框架支持jdbc.redis存储,使用非常简单,可以去官网查看文档一步步接入即可,官网文档如下:https://docs.spring. ...