Codeforces Round #556 (Div. 2) D. Three Religions 题解 动态规划
题目链接:http://codeforces.com/contest/1150/problem/D
题目大意:
你有一个参考串 s 和三个装载字符串的容器 vec[0..2] ,然后还有 q 次操作,每次操作你可以选择3个容器中的任意一个容器,往这个容器的末尾添加一个字符,或者从这个容器的末尾取出一个字符。
每一次操作之后,你都需要判断:三个容器的字符串能够表示成 s 的三个不重叠的子序列。
比如,如果你的参考串 s 是:
abdabc
而三个容器对应的字符串是:
vec[0]:advec[1]:bcvec[2]:ab
那么是三个容器是可以凭借成 s 的三个不重叠的子序列的,如图:

题目分析:
首先如果不是q次询问的话,那么这道题目乍看起来应该是可以使用dp或者网络流来进行求解的。
那么这道题目用dp比较好解。
首先我们需要开一个 nxt[N][26] 的数组,nxt[i][j] 表示以字符串 s[i] 开始第一个出现字符 'a'+j 的位置。N 表示字符串 s 的长度。
那么我们可以用 O(N*26) 的时间初始化这个数组。
然后我们开一个三维数组 dp[250][250][250] ,其中 dp[n0][n1][n2] 表示 字符串 s 匹配到 vec[0][n0]、vec[1][n1]、vec[2][n2] 的最小坐标。
那么我们就能够无推断出状态转移方程:
if (!i && !j && !k) dp[0][0][0] = -1;
else {
if (i && dp[i-1][j][k]+1 < N && nxt[dp[i-1][j][k]+1][vec[0][i-1]-'a'] != INF) {
dp[i][j][k] = min(dp[i][j][k], nxt[dp[i-1][j][k]+1][vec[0][i-1]-'a']);
}
if (j && dp[i][j-1][k]+1 < N && nxt[dp[i][j-1][k]+1][vec[1][j-1]-'a'] != INF) {
dp[i][j][k] = min(dp[i][j][k], nxt[dp[i][j-1][k]+1][vec[1][j-1]-'a']);
}
if (k && dp[i][j][k-1]+1 < N && nxt[dp[i][j][k-1]+1][vec[2][k-1]-'a'] != INF) {
dp[i][j][k] = min(dp[i][j][k], nxt[dp[i][j][k-1]+1][vec[2][k-1]-'a']);
}
}
我们可以用 O(250^3) 的时间复杂度求得一个答案,然后对于q次询问,时间复杂度是 O(250^3*q),
但是我们注意到每次更新都知识更新三个容器中任意一个的一个值。
对于减字符串操作,我们不需要进行任何处理;
而对于增加字符串操作,我们假设三个容器的字符串个数分别为 N0、N1和N2,那么:
- 当我们往
vec[0]中添加了一个元素之后,我们除了N0++操作以外,只需要更新dp[N0][0][0]到dp[N0][N1][N2]; - 当我们往
vec[1]中添加了一个元素之后,我们除了N1++操作以外,只需要更新dp[0][N1][0]到dp[N0][N1][N2]; - 当我们往
vec[2]中添加了一个元素之后,我们除了N2++操作以外,只需要更新dp[0][0][N2]到dp[N0][N1][N2]。
所以其实对于每一次询问,我们都只需要进行 O(250^2) 就可以了。
那么最终我们将这道题目的时间复杂度降到了 O(q*250^2) 。
代码:
#include <iostream>
#include <algorithm>
#include <vector>
#include <cstdio>
using namespace std;
#define INF (1<<29)
int dp[255][255][255], n[3], nxt[100005][26], N, q;
vector<char> vec[3];
string s;
void init() {
for (int i = 0; i < 26; i ++) {
int idx = INF;
for (int j = N-1; j >= 0; j --) {
char c = (char)('a' + i);
if (s[j] == c)
idx = j;
nxt[j][i] = idx;
}
}
}
void cal(int n0, int n1, int n2) {
for (int i = n0; i <= n[0]; i ++) {
for (int j = n1; j <= n[1]; j ++) {
for (int k = n2; k <= n[2]; k ++) {
dp[i][j][k] = INF;
if (!i && !j && !k) dp[0][0][0] = -1;
else {
if (i && dp[i-1][j][k]+1 < N && nxt[dp[i-1][j][k]+1][vec[0][i-1]-'a'] != INF) {
dp[i][j][k] = min(dp[i][j][k], nxt[dp[i-1][j][k]+1][vec[0][i-1]-'a']);
}
if (j && dp[i][j-1][k]+1 < N && nxt[dp[i][j-1][k]+1][vec[1][j-1]-'a'] != INF) {
dp[i][j][k] = min(dp[i][j][k], nxt[dp[i][j-1][k]+1][vec[1][j-1]-'a']);
}
if (k && dp[i][j][k-1]+1 < N && nxt[dp[i][j][k-1]+1][vec[2][k-1]-'a'] != INF) {
dp[i][j][k] = min(dp[i][j][k], nxt[dp[i][j][k-1]+1][vec[2][k-1]-'a']);
}
}
}
}
}
}
int main() {
cin >> N >> q >> s;
init();
cal(0, 0, 0);
while (q --) {
string tmps1, tmps2;
int tmpnum;
cin >> tmps1 >> tmpnum;
if (tmps1 == "+") {
cin >> tmps2;
vec[tmpnum-1].push_back(tmps2[0]);
n[tmpnum-1] ++;
switch(tmpnum) {
case 1:
cal(n[0], 0, 0);
break;
case 2:
cal(0, n[1], 0);
break;
case 3:
cal(0, 0, n[2]);
break;
}
} else {
n[tmpnum-1] --;
vec[tmpnum-1].pop_back();
}
cout << ( dp[n[0]][n[1]][n[2]] == INF ? "NO" : "YES" ) << endl;
}
return 0;
}
Codeforces Round #556 (Div. 2) D. Three Religions 题解 动态规划的更多相关文章
- Codeforces Round #556 (Div. 2) - D. Three Religions(动态规划)
Problem Codeforces Round #556 (Div. 2) - D. Three Religions Time Limit: 3000 mSec Problem Descripti ...
- Codeforces Round #556 (Div. 2) - C. Prefix Sum Primes(思维)
Problem Codeforces Round #556 (Div. 2) - D. Three Religions Time Limit: 1000 mSec Problem Descripti ...
- Codeforces Round #556 (Div. 1)
Codeforces Round #556 (Div. 1) A. Prefix Sum Primes 给你一堆1,2,你可以任意排序,要求你输出的数列的前缀和中质数个数最大. 发现只有\(2\)是偶 ...
- Codeforces Round #609 (Div. 2)前五题题解
Codeforces Round #609 (Div. 2)前五题题解 补题补题…… C题写挂了好几个次,最后一题看了好久题解才懂……我太迟钝了…… 然后因为longlong调了半个小时…… A.Eq ...
- Codeforces Round #556 (Div. 2)
比赛链接 A 贪心 #include <cstdlib> #include <cstdio> #include <algorithm> #include <c ...
- Codeforces Round #556 (Div. 2)-ABC(这次的题前三题真心水)
A. Stock Arbitraging 直接上代码: #include<cstdio> #include<cstring> #include<iostream> ...
- Codeforces Round #335 (Div. 2) C. Sorting Railway Cars 动态规划
C. Sorting Railway Cars Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.codeforces.com/conte ...
- Codeforces Round #370 (Div. 2) D. Memory and Scores 动态规划
D. Memory and Scores 题目连接: http://codeforces.com/contest/712/problem/D Description Memory and his fr ...
- Codeforces Round #272 (Div. 2) E. Dreamoon and Strings 动态规划
E. Dreamoon and Strings 题目连接: http://www.codeforces.com/contest/476/problem/E Description Dreamoon h ...
随机推荐
- codevs:1462 素数和:给定2个整数a,b 求出它们之间(不含a,b)所有质数的和。
#include<iostream>#include<cstdio>#include<cmath>using namespace std;int main(){ i ...
- 【dp】P1026 统计单词个数
题目描述 给出一个长度不超过200200的由小写英文字母组成的字母串(约定;该字串以每行2020个字母的方式输入,且保证每行一定为2020个).要求将此字母串分成kk份(1<k \le 401& ...
- 交互设计算法基础(3) - Quick Sort
int pivotIndex, pivot, swapIndex; void swap(int[] arr, int x, int y) { int temp = arr[x]; arr[x] = a ...
- 洛谷 P4377 [USACO18OPEN]Talent Show + 分数规划
分数规划 分数规划可以用来处理有关分数即比值的有关问题. 而分数规划一般不单独设题,而是用来和dp,图论,网络流等算法结合在一起. 而基础的做法一般是通过二分. 二分题目我们都知道,需要求什么的最小或 ...
- 模板 - 数学 - 同余 - 扩展Euclid算法
普通的扩展欧几里得算法,通过了洛谷的扩展欧几里得算法找乘法逆元.修复了容易溢出的bug,虽然新版本仍有可能会溢出longlong,假如参与运算的数字都是longlong,假如可以的话直接使用__int ...
- 模板 - 数学 - 数论 - Miller-Rabin算法
使用Fermat小定理(Fermat's little theorem)的原理进行测试,不满足 \(2^{n-1}\;\mod\;n\;=\;1\) 的n一定不是质数:如果满足的话则多半是质数,满足上 ...
- Javascript正则RegExp对象replace方法替换url参数值
看别的博客有用eval执行正则表达式的写法, //替换指定传入参数的值,paramName为参数,replaceWith为新值 function replaceParamVal(paramName,r ...
- Mybatis笔记(二)
目录 MyBatis 逆向工程 MyBatis Generator 使用 分页插件 1.下载分页插件 2.配置分页插件 3.使用分页插件 SSM整合(spring与springMVC) 1.创建web ...
- CentOs7设置主机名称,以及主机名称和ip的对应关系
一.修改主机名称 在CentOS7中有三种定义的主机名:静态的(static).瞬态的(transient).和灵活的(pretty).静态主机名也称为内核主机名,是系统在启动时从/etc/hostn ...
- Python ( )、[ ]、{}的区别
python语言最常见的括号有三种,分别是:小括号( ).中括号[ ]和大括号也叫做花括号{ },分别用来代表不同的python基本内置数据类型. python中的小括号( ):代表tuple元组数据 ...