Bzoj 2875: [Noi2012]随机数生成器(矩阵乘法)
2875: [Noi2012]随机数生成器
Time Limit: 10 Sec Memory Limit: 512 MB
Submit: 2052 Solved: 1118
Description
栋栋最近迷上了随机算法,而随机数是生成随机算法的基础。栋栋准备使用线性同余法(Linear Congruential Me
thod)来生成一个随机数列,这种方法需要设置四个非负整数参数m,a,c,X[0],按照下面的公式生成出一系列随机
数X[n]X[n+1]=(aX[n]+c)mod m其中mod m表示前面的数除以m的余数。从这个式子可以看出,这个序列的下一个数
总是由上一个数生成的。用这种方法生成的序列具有随机序列的性质,因此这种方法被广泛地使用,包括常用的C+
+和Pascal的产生随机数的库函数使用的也是这种方法。栋栋知道这样产生的序列具有良好的随机性,不过心急的
他仍然想尽快知道X[n]是多少。由于栋栋需要的随机数是0,1,…,g-1之间的,他需要将X[n]除以g取余得到他想要
的数,即X[n] mod g,你只需要告诉栋栋他想要的数X[n] mod g是多少就可以了。
Input
包含6个用空格分割的m,a,c,X0,n和g,其中a,c,X0是非负整数,m,n,g是正整数。
Output
输出一个数,即Xn mod g
Sample Input
11 8 7 1 5 3
Sample Output
2
/*
矩阵乘法.
随便推一推就好了.
这题爆longlong,用慢速乘搞一搞.
*/
#include<iostream>
#include<cstdio>
#define LL unsigned long long
using namespace std;
LL n,a1,c1,x0,m,g,a[3][3],b[3][3],c[3][3],ans[3][3];
LL mul(LL x,LL y)
{
LL tot=0;
while(y)
{
if(y&1)
{
y--;
tot=(tot+x)%m;
}
x=(x+x)%m;
y>>=1;
}
return tot;
}
void mi()
{
while(n)
{
if(n&1)
{
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+mul(ans[i][k],b[k][j])%m)%m;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
ans[i][j]=c[i][j],c[i][j]=0;
}
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
c[i][j]=(c[i][j]+mul(b[i][k],b[k][j])%m)%m;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
b[i][j]=c[i][j],c[i][j]=0;
n>>=1;
}
}
void slove()
{
ans[1][1]=x0,ans[1][2]=c1;
b[1][1]=a1,b[2][1]=1,b[2][2]=1;
mi();
cout<<ans[1][1]%g;
}
int main()
{
cin>>m>>a1>>c1>>x0>>n>>g;
slove();
return 0;
}
Bzoj 2875: [Noi2012]随机数生成器(矩阵乘法)的更多相关文章
- BZOJ 2875: [Noi2012]随机数生成器( 矩阵快速幂 )
矩阵快速幂...+快速乘就OK了 ----------------------------------------------------------------------------------- ...
- bzoj 2875: [Noi2012]随机数生成器
#include<cstdio> #include<iostream> #include<cstring> #define ll long long using n ...
- [NOI2012]随机数生成器 矩阵乘法
Code: #include<cstdio> #include<algorithm> #include<iostream> #include<cstring& ...
- BZOJ-2875 随机数生成器 矩阵乘法快速幂+快速乘
题目没给全,吃X了... 2875: [Noi2012]随机数生成器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 1479 Solved: 829 ...
- [vijos1725&bzoj2875]随机数生成器<矩阵乘法&快速幂&快速乘>
题目链接:https://vijos.org/p/1725 http://www.lydsy.com/JudgeOnline/problem.php?id=2875 这题是前几年的noi的题,时间比较 ...
- 【BZOJ】2875: [Noi2012]随机数生成器(矩阵乘法+快速乘)
http://www.lydsy.com/JudgeOnline/problem.php?id=2875 矩阵的话很容易看出来.....我就不写了.太水了. 然后乘法longlong会溢出...那么我 ...
- 2875: [Noi2012]随机数生成器 - BZOJ
DescriptionInput 包含6个用空格分割的m,a,c,X0,n和g,其中a,c,X0是非负整数,m,n,g是正整数. Output 输出一个数,即Xn mod gSample Input ...
- [luogu2044][NOI2012] 随机数生成器 [矩阵快速幂]
题面: 传送门 思路: 看一眼这个公式: $x\left[n+1\right]=\left(a\ast x\left[n\right]+c\right) mod m$ 递推,数据范围$n\leq 10 ...
- [日常摸鱼]bzoj2875[NOI2012]随机数生成器-矩阵快速幂
好裸的矩阵快速幂-然而我一开始居然构造不出矩阵- 平常两个的情况都是拿相邻两项放在矩阵里拿去递推的-然后我就一直构造不出来-其实把矩阵下面弄成1就好了啊orz #include<cstdio&g ...
随机推荐
- [洛谷P3227][HNOI2013]切糕
题目大意:有一个$n\times m$的切糕,每一个位置的高度可以在$[1,k]$之间,每个高度有一个代价,要求四联通的两个格子之间高度最多相差$D$,问可行的最小代价.$n,m,k,D\leqsla ...
- 在KubeSphere中部署Kubeapps
1. 情况说明 使用一台VMWare Workstation虚拟机,4核8G内存,50G磁盘 已安装KubeSphere 2.1 版本,已经按照官方文档的入门必读,示例一创建好相应的账号信息等 Kub ...
- Java 平衡二叉树和AVL
与BST<> 进行对比 import java.util.ArrayList; import java.util.Collections; public class Main { pu ...
- 转:Java接口和抽象类
转:http://www.cnblogs.com/dolphin0520/p/3811437.html 一.抽象类 在了解抽象类之前,先来了解一下抽象方法.抽象方法是一种特殊的方法:它只有声明,而没有 ...
- Java并发多线程面试题 Top 50
不管你是新程序员还是老手,你一定在面试中遇到过有关线程的问题.Java语言一个重要的特点就是内置了对并发的支持,让Java大受企业和程序员的欢迎.大多数待遇丰厚的Java开发职位都要求开发者精通多线程 ...
- 手写DAO框架(六)-框架使用示例
一.引入pom <dependency> <groupId>me.lovegao</groupId> <artifactId>gdao</arti ...
- Appscan漏洞之跨站点请求伪造(CSRF)
公司前段时间使用了Fortify扫描项目代码,在修复完这些Fortify漏洞后,最近又启用了Appscan对项目代码进行漏洞扫描,同样也是安排了本人对这些漏洞进行修复.现在,针对修复过的Appscan ...
- 如何在backoffice里创建Hybris image container以及分配给product
登录backoffice,在media container视图点击新建按钮: Catalog选择Product Catalog: 在Properties界面,可以选择media实例放入该contain ...
- Python日记(二):Python之禅
The Zen of Python, by Tim Peters Beautiful is better than ugly. Explicit is better than implicit. Si ...
- Go数据类型之复合数据类型--数组
3.1数组 数组是一个由固定长度的特定类型元素组成的序列,一个数组可以由零个或多个元素组成.数组中每个元素类型相同,又是连续分配,因此可以以固定的速度索引数组中的任何数据,速度非常快. 3.1.1声明 ...