PTA (Advanced Level) 1010 Radix
Radix
Given a pair of positive integers, for example, 6 and 110, can this equation 6 = 110 be true? The answer is yes
, if 6 is a decimal number and 110 is a binary number.
Now for any pair of positive integers N1 and N2, your task is to find the radix of one number while that of the other is given.
Input Specification:
Each input file contains one test case. Each case occupies a line which contains 4 positive integers:
N1 N2 tag radix
Here N1
and N2
each has no more than 10 digits. A digit is less than its radix and is chosen from the set { 0-9, a
-z
} where 0-9 represent the decimal numbers 0-9, and a
-z
represent the decimal numbers 10-35. The last number radix
is the radix of N1
if tag
is 1, or of N2
if tag
is 2.
Output Specification:
For each test case, print in one line the radix of the other number so that the equation N1
= N2
is true. If the equation is impossible, print Impossible
. If the solution is not unique, output the smallest possible radix.
Sample Input 1:
6 110 1 10
Sample Output 1:
2
Sample Input 2:
1 ab 1 2
Sample Output 2:
Impossible
解题思路:
本题给出两个数字n1、n2,给出其中一个数字tag的进制radix,要求判断是否存在某一进制可以使另一个数字与给定数字相等。
为了方便运算,用字符串tn1、tn2记录输入的两个数字,字符串n1记录给定进制的数字,字符串n2记录未确定数字。用map<char, int > mp,记录每个字符所对应的数值,之后,可以先将给定进制的数字n1转化为10进制,n2的进制最小为其包含的最大数字+1记为leftn,且由于n2是整数,所以其进制最大不会超过n1的十进制与leftn中较大的一个+1,记为rightn。以leftn和rightn分别为左右边界二分所有进制,记mid为中点进制,将n2按mid进制转化为10进制与n1的十进制进行比较,如果n2较大证明mid取值过大,将rightn记为mid - 1;若小了,证明mid取值过小,leftn记为mid+1,若正好相等则找到答案。若无法找到某进制使得n1与n2相等,返回-1,如果返回的答案不为-1,输出答案,否则输出Impossible。
AC代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
map<char, LL> mp;
void init(){
for(char i = ''; i <= ''; i++){
mp[i] = i - ''; //初始化0 - 9
}
for(char i = 'a'; i <= 'z'; i++){
mp[i] = i - 'a' + ; //初始化a - z
}
}
LL toDecimal(string a, LL radix, LL maxn){ //转化为10进制的函数,所转化后的数不会超过给出的maxn
int len = a.size();
LL ans = ;
for(int i = ; i < len; i++){
ans = ans * radix + mp[a[i]];
if(ans < || ans > maxn){ //如果数据溢出了或超过上限
return -;//返回-1
}
}
return ans;//返回转化后的值
}
int cmp(string a, LL radix, LL n1){ //比较函数,用于比较n2的radix进制转化为10进制后与n1的十进制的大小
LL n2_10 = toDecimal(a, radix, n1);
//获得n2转化为10进制的值
if(n2_10 == n1) //如果n2的10进制与n1的十进制相同证明该进制是我们要获得的进制,返回0
return ;
else if(n2_10 < ) //如果toDecimal函数返回的n2小于0,证明n2在该进制下转化为十进制后大于n1的十进制
return ; //进制过大返回1
else if(n1 > n2_10) //如果n2在当前进制下转化为10进制小于n1的十进制
return -; //进制过小返回-1
else //否则返回1
return ;
}
LL getRadix(string a, LL leftn, LL rightn, LL n1){
//二分函数传入n2字符串,最小进制,最大进制,n1的十进制值
while(leftn <= rightn){
LL mid = (leftn + rightn) / ;
//获得中点
LL flag = cmp(a, mid, n1);
//判断终点进制n1与n2状态
if(flag == ) //若比较函数返回了0,证明在mid进制下n1与n2相等
return mid; //返回mid
else if(flag == -){ //进制过小
leftn = mid + ;
}else if(flag == ){ //进制过大
rightn = mid - ;
}
}
return -;
}
int getMaxNum(string a){ //获得n2中最大的数字
LL ans = -;
for(string::iterator it = a.begin(); it != a.end(); it++){
ans = max(ans, mp[*it]);
}
return ans;
}
int main(){
init(); //初始化mp
string tn1, tn2, n1, n2;
int tag, radix;
cin >> tn1 >> tn2 >> tag >> radix;
//输入 tn1 tn2 tag radix;
if(tag == ){
n1 = tn1;
n2 = tn2;
}else{
n1 = tn2;
n2 = tn1;
}
//n1记录已经确定进制的数字,n2记录未确定的数字
LL n1_10 = toDecimal(n1, radix, INT_MAX);
//将n1转化为10进制其上限为无穷大
LL leftn = getMaxNum(n2) + ;
//获得n2的最小进制
LL rightn = max(leftn, n1_10) + ;
//获得n2的最大进制
LL ans = getRadix(n2, leftn, rightn, n1_10);
//二分所有进制
if(tn1 == tn2)
printf("%d\n", radix);
else if(ans == -){
printf("Impossible\n");
}else{
printf("%lld\n", ans);
}
return ;
}
PTA (Advanced Level) 1010 Radix的更多相关文章
- PAT (Advanced Level) 1010. Radix (25)
撸完这题,感觉被掏空. 由于进制可能大的飞起..所以需要开longlong存,答案可以二分得到. 进制很大,导致转换成10进制的时候可能爆long long,在二分的时候,如果溢出了,那么上界=mid ...
- PTA(Advanced Level)1036.Boys vs Girls
This time you are asked to tell the difference between the lowest grade of all the male students and ...
- PTA (Advanced Level) 1004 Counting Leaves
Counting Leaves A family hierarchy is usually presented by a pedigree tree. Your job is to count tho ...
- PTA (Advanced Level) 1027 Colors in Mars
Colors in Mars People in Mars represent the colors in their computers in a similar way as the Earth ...
- PTA (Advanced Level) 1020 Tree Traversals
Tree Traversals Suppose that all the keys in a binary tree are distinct positive integers. Given the ...
- PTA (Advanced Level) 1019 General Palindromic Number
General Palindromic Number A number that will be the same when it is written forwards or backwards i ...
- PTA (Advanced Level) 1015 Reversible Primes
Reversible Primes A reversible prime in any number system is a prime whose "reverse" in th ...
- PTA(Advanced Level)1025.PAT Ranking
To evaluate the performance of our first year CS majored students, we consider their grades of three ...
- PTA (Advanced Level)1035.Password
To prepare for PAT, the judge sometimes has to generate random passwords for the users. The problem ...
随机推荐
- tomcat7-maven-plugin 端口
不知道有没有人像我这样,在pom配置了下面这段之后, <plugins> <plugin> <groupId>org.apache.tomcat.maven< ...
- 更改kvm虚拟机磁盘大小
kvm 虚拟机的磁盘大小可通过命令:qemu-img resize filename size 来改,要注意的是resize只支持raw格式的磁盘文件,如果想更改qcow2等格式的磁盘大小,需先用qe ...
- ASP.NET 常用的字符串加密
字符串常用的加密有三种 1.MD5加密,这个常用于密码,单向加密,不可解密,有些在线解密的可以解大部份,用代码不能实现,如果不想让人解密,加密后随便截取一段就好了: 2.Base64位加密,通常加密后 ...
- [C#学习笔记]Func委托与Action委托
学习一项新知识的时候,最好的方法就是去实践它. 前言 <CLR via C#>这本神书真的是太有意思了!好的我的前言就是这个. Fun 如果要用有输入参数,有返回值的委托,那么Func委托 ...
- Android DatePicker / TimePicker 占空间太大的解决办法
DatePicker 与 TimePicker 控件占用的空间是固定的,没有参数可以更改. 如果修改 length 和 width 属性,只会让控件被切割,显示将不完整.很多人说可以使用 scale ...
- 自注意力机制(Self-attention Mechanism)——自然语言处理(NLP)
近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中.随着注意力机制的深入研究,各式各样的attention被研究者们提出.在2017年6月google机 ...
- “全栈2019”Java第一百章:局部内部类可以实现接口吗?
难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...
- Creating a custom analyzer in ElasticSearch Nest client
Creating a custom analyzer in ElasticSearch Nest client Question: Im very very new to elasticsearch ...
- AngularJS源码解析3:RootScope的创建过程
RootScopeProvider简介 RootScopeProvider是angularjs里面比较活跃的一个provider.它主要用来生成实例rootScope,它代表angularjs应用的根 ...
- oracle中将number类型毫秒值转为时间类型
在搞数据库时,发现有这样的一个字段,类型是NUMBER(38),查看了一下里面的数据,都是这样的: 13239576781141321326994295132212930680413221297162 ...