最短路和次短路的条数(dijstra算法或spfa算法)POJ3463
http://poj.org/problem?id=3463
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 7252 | Accepted: 2581 |
Description
Tour operator Your Personal Holiday organises guided bus trips across the Benelux. Every day the bus moves from one city S to another city F. On this way, the tourists in the bus can see the sights alongside the route travelled. Moreover, the bus makes a number of stops (zero or more) at some beautiful cities, where the tourists get out to see the local sights.
Different groups of tourists may have different preferences for the sights they want to see, and thus for the route to be taken from S to F. Therefore, Your Personal Holiday wants to offer its clients a choice from many different routes. As hotels have been booked in advance, the starting city S and the final city F, though, are fixed. Two routes from S to F are considered different if there is at least one road from a city A to a city B which is part of one route, but not of the other route.
There is a restriction on the routes that the tourists may choose from. To leave enough time for the sightseeing at the stops (and to avoid using too much fuel), the bus has to take a short route from S to F. It has to be either a route with minimal distance, or a route which is one distance unit longer than the minimal distance. Indeed, by allowing routes that are one distance unit longer, the tourists may have more choice than by restricting them to exactly the minimal routes. This enhances the impression of a personal holiday.

For example, for the above road map, there are two minimal routes from S = 1 to F = 5: 1 → 2 → 5 and 1 → 3 → 5, both of length 6. There is one route that is one distance unit longer: 1 → 3 → 4 → 5, of length 7.
Now, given a (partial) road map of the Benelux and two cities S and F, tour operator Your Personal Holiday likes to know how many different routes it can offer to its clients, under the above restriction on the route length.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
One line with two integers N and M, separated by a single space, with 2 ≤ N ≤ 1,000 and 1 ≤ M ≤ 10, 000: the number of cities and the number of roads in the road map.
M lines, each with three integers A, B and L, separated by single spaces, with 1 ≤ A, B ≤ N, A ≠ B and 1 ≤ L ≤ 1,000, describing a road from city A to city B with length L.
The roads are unidirectional. Hence, if there is a road from A to B, then there is not necessarily also a road from B to A. There may be different roads from a city A to a city B.
One line with two integers S and F, separated by a single space, with 1 ≤ S, F ≤ N and S ≠ F: the starting city and the final city of the route.
There will be at least one route from S to F.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of routes of minimal length or one distance unit longer. Test cases are such, that this number is at most 109 = 1,000,000,000.
Sample Input
2
5 8
1 2 3
1 3 2
1 4 5
2 3 1
2 5 3
3 4 2
3 5 4
4 5 3
1 5
5 6
2 3 1
3 2 1
3 1 10
4 5 2
5 2 7
5 2 7
4 1
Sample Output
3
2
题意:给出一个有向图,起点和终点,然后询问最短路和次短路比最短路大1的总条数;
第一种:dijstra
#pragma comment(linker, "/STACK:1024000000,1024000000")
#include"stdio.h"
#include"string.h"
#include"iostream"
#include"map"
#include"string"
#include"queue"
#include"stdlib.h"
#include"algorithm"
#include"vector"
#include"math.h"
#define M 1009
#define eps 1e-5
#define mod 100000000
#define inf 0x3f3f3f3f
using namespace std;
struct node
{
int v,w;
node(int vv,int ww)
{
v=vv;
w=ww;
}
};
vector<node>edge[M];
int dis[M][],vis[M][],num[M][];
void dij(int s,int t,int n)
{
int i,j;
memset(dis,inf,sizeof(dis));
memset(vis,,sizeof(vis));
dis[s][]=;
num[s][]=num[s][]=;
for(i=;i<=n*;i++)
{
int mini=inf;
int u=-;
int flag;
for(j=;j<=n;j++)
{
if(!vis[j][]&&mini>dis[j][])
{
flag=;
mini=dis[j][];
u=j;
}
else if(!vis[j][]&&mini>dis[j][])
{
flag=;
mini=dis[j][];
u=j;
}
}
if(u==-)break;
vis[u][flag]=;
for(j=;j<(int)edge[u].size();j++)
{
int v=edge[u][j].v;
int w=edge[u][j].w;
if(dis[v][]>mini+w)
{
dis[v][]=dis[v][];
dis[v][]=mini+w;
num[v][]=num[v][];
num[v][]=num[u][flag];
}
else if(dis[v][]==mini+w)
{
num[v][]+=num[u][flag];
}
else if(dis[v][]>mini+w)
{
dis[v][]=mini+w;
num[v][]=num[u][flag];
}
else if(dis[v][]==mini+w)
{
num[v][]+=num[u][flag];
}
}
}
int ans;
if(dis[t][]==dis[t][]+)
ans=num[t][]+num[t][];
else
ans=num[t][];
//printf("%d %d %d %d\n",dis[t][0],dis[t][1],num[t][0],num[t][1]);
printf("%d\n",ans);
}
int main()
{
int T,n,m,i;
cin>>T;
while(T--)
{
scanf("%d%d",&n,&m);
for(i=;i<=n;i++)
edge[i].clear();
for(i=;i<m;i++)
{
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
edge[u].push_back(node(v,w));
}
int s,t;
scanf("%d%d",&s,&t);
dij(s,t,n);
}
return ;
}
第二种:spfa
#include"stdio.h"
#include"string.h"
#include"queue"
#include"stdlib.h"
#define M 1009
#define inf 0x3f3f3f3f
using namespace std;
struct Gra
{
int u,v,w,next;
}edge[M*];
int t,head[M],dis[M][],num[M][],use[M][];
void init()
{
t=;
memset(head,-,sizeof(head));
}
void add(int u,int v,int w)
{
edge[t].u=u;
edge[t].v=v;
edge[t].w=w;
edge[t].next=head[u];
head[u]=t++;
}
struct node
{
int v,flag,dis;
node(){}
node(int v,int dis,int flag)
{
this->v=v;
this->dis=dis;
this->flag=flag;
}
bool operator<(const node &a)const
{
return dis>a.dis;
}
};
void dij(int s,int n)
{
priority_queue<node>q;
memset(dis,inf,sizeof(dis));
memset(use,,sizeof(use));
dis[s][]=;
num[s][]=;
q.push(node(s,,));
while(!q.empty())
{
node cur=q.top();
int u=cur.v;
int flag=cur.flag;
q.pop();
if(use[u][flag])continue;
use[u][flag]=;
for(int i=head[u];~i;i=edge[i].next)
{
int v=edge[i].v;
if(dis[v][]>dis[u][flag]+edge[i].w)
{
dis[v][]=dis[v][];
dis[v][]=dis[u][flag]+edge[i].w;
num[v][]=num[v][];
num[v][]=num[u][flag];
q.push(node(v,dis[v][],));
q.push(node(v,dis[v][],));
}
else if(dis[v][]==dis[u][flag]+edge[i].w)
{
num[v][]+=num[u][flag];
}
else if(dis[v][]>dis[u][flag]+edge[i].w)
{
dis[v][]=dis[u][flag]+edge[i].w;
num[v][]=num[u][flag];
q.push(node(v,dis[v][],));
}
else if(dis[v][]==dis[u][flag]+edge[i].w)
{
num[v][]+=num[u][flag];
}
}
}
}
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
int n,m;
scanf("%d%d",&n,&m);
init();
for(int i=;i<=m;i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
add(a,b,c);
}
int ss,tt;
scanf("%d%d",&ss,&tt);
dij(ss,n);
int ans=;
ans+=num[tt][];
if(dis[tt][]+==dis[tt][])
ans+=num[tt][];
printf("%d\n",ans);
}
return ;
}
最短路和次短路的条数(dijstra算法或spfa算法)POJ3463的更多相关文章
- Bellman-ford算法、SPFA算法求解最短路模板
Bellman-ford 算法适用于含有负权边的最短路求解,复杂度是O( VE ),其原理是依次对每条边进行松弛操作,重复这个操作E-1次后则一定得到最短路,如果还能继续松弛,则有负环.这是因为最长的 ...
- 图论之最短路算法之SPFA算法
SPFA(Shortest Path Faster Algorithm)算法,是一种求最短路的算法. SPFA的思路及写法和BFS有相同的地方,我就举一道例题(洛谷--P3371 [模板]单源最短路径 ...
- hdu1688(dijkstra求最短路和次短路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1688 题意:第k短路,这里要求的是第1短路(即最短路),第2短路(即次短路),以及路径条数,最后如果最 ...
- HDU 1688 Sightseeing&HDU 3191 How Many Paths Are There(Dijkstra变形求次短路条数)
Sightseeing Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tota ...
- HDU 3416 Marriage Match IV (求最短路的条数,最大流)
Marriage Match IV 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/Q Description Do not si ...
- HDU 3191 次短路长度和条数
http://www.cnblogs.com/wally/archive/2013/04/16/3024490.html http://blog.csdn.net/me4546/article/det ...
- POJ---3463 Sightseeing 记录最短路和次短路的条数
Sightseeing Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9247 Accepted: 3242 Descr ...
- HDU3191 【输出次短路条数】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3191 How Many Paths Are There Time Limit: 2000/1000 M ...
- HDU 1688 Sightseeing 【输出最短路+次短路条数】
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1688 题目大意:给n个点,m条有向边.再给出起点s, 终点t.求出s到t的最短路条数+次短路条数. 思 ...
随机推荐
- jQuery EasyUI教程之datagrid应用-1
一.利用jQuery EasyUI的DataGrid创建CRUD应用 对网页应用程序来说,正确采集和管理数据通常很有必要,DataGrid的CRUD功能允许我们创建页面来列表显示和编辑数据库记录.本教 ...
- r指定位置插入一列
y<-1:4 data1 <-data.frame(x1=c(1,3,5,7), x2=c(2,4,6,8),x3=c(11,12,13,14),x4=c(15,16,17,18)) da ...
- Intellij IDEA 使用学习
Intellij中名词解释: Project,就是一个完整的项目,类似Eclipse中的WorkSet(虽然WorkSet是人为归类的). Module,是Project中的模块,类似Eclipse中 ...
- 科技发烧友之单反佳能700d中高端
http://detail.zol.com.cn/series/15/15795_1.html 前三 佳能 尼康 索尼 佳能5d 1.6w 佳能70d 5k 佳能6d 9k 佳能d7100 5k 尼康 ...
- 【Java面试题】5 Integer的int 的种种比较?详细分析
如果面试官问Integer与int的区别:估计大多数人只会说道两点,Ingeter是int的包装类,int的初值为0,Ingeter的初值为null.但是如果面试官再问一下Integer i = 1; ...
- ftp命令行工具如何 连接 非标准21端口(其他端口)的ftp服务器
windows: step1:ftp命令进入ftp交互环境 step2:ftp>open ip空格port 然后...
- [译]Unity3D内存管理——对象池(Object Pool)
原文地址:C# Memory Management for Unity Developers (part 3 of 3), 其实从原文标题可以看出,这是一系列文章中的第三篇,前两篇讲解了从C#语言本身 ...
- SQLite学习手册
在实际的应用中,SQLite作为目前最为流行的开源嵌入式关系型数据库,在系统的架构设计中正在扮演着越来越为重要的角色.和很多其它嵌入式NoSQL数据库不同的是,SQLite支持很多关系型数据库的基本特 ...
- nginx配置技巧汇总
https://segmentfault.com/a/1190000000437323
- wm_concat函数 用法
首先让我们来看看这个神奇的函数wm_concat(列名),该函数可以把列值以","号分隔起来,并显示成一行,接下来上例子,看看这个神奇的函数如何应用 准备测试数据 SQL> ...