POJ1845:Sumdiv(求因子和+逆元+质因子分解)好题
题目链接:http://poj.org/problem?id=1845
s(n)=[(p1^a1+1 -1)/(p1-1)]*[(p2^a2+1 -1)/(p2-1)]*[(p3^a3+1 -1)/(p3-1)]***[(ps^as+1 -1)/(ps-1)];(因子和)
又因为s(n)%mod等于每一个部分取模,所以可以逐步求解,如求(p1^a1+1 -1)/(p1-1)%mod,在这里就要运用除法取模所以要用到乘法逆元的概念,
即(a/b) %p= ( a *b^(-1)%p) ,又因为(a^b) % p = ((a % p)^b) % p ,
所以(p1^a1+1 -1)/(p1-1)%mod==(((p1%mod)^a1+1 -1)%mod*(p1-1)^-1)%mod;
当然存在逆元的前提是gcd(a,p)==1;
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <math.h>
#define N 500010
#define mod 9901
typedef __int64 ll;
using namespace std;
ll a,b,X,Y;
ll ans[N],num[N],top;
ll pow(ll x,ll k)
{
ll t=;
while(k)
{
if(k&) t=((t%mod)*(x%mod))%mod;
k>>=;
x=((x%mod)*(x%mod))%mod;
}
return t;
}
void extend(__int64 A,__int64 B,__int64 &x1, __int64 &y1)
{
if(B==)
{
x1=;
y1=;
return ;
}
extend(B,A%B,x1,y1);
ll t=x1;
x1=y1;
y1=t-(A/B)*y1;
return ;
}
void solve()
{
ll sum=,A,xx;
for(int i=; i<top; i++)
{
if(ans[i]%mod==) continue;//关键的两个判断,关系到求逆元。 如果ans[i]%mod=0,那么有等级公式可以看出,原式小于0,所以也只能利用原式求,结果为1
if(ans[i]%mod==)//即mod|(ans[i]-1),因为ans[i]>=2,所以ans[i]不可能等于1,这是gcd(ans[i]-1,mod)==mod,不存在逆元,无法利用扩展欧几里得求逆元
{ //这时为(1+ans[i]^1+ans[i]^2+.....+ans[i]^num[i])%mod=(num[i]+1)%mod;
sum=(sum*(num[i]+))%mod;
continue;
}
A=pow(ans[i],num[i]+);
A=(A-)%mod;
extend(ans[i]-,mod,X,Y);//因为ans[i]为素数,ans[i]-1为偶数,所以ans[i]-1与9901互质
xx=(X%mod+mod)%mod;
A=((A%mod)*(xx%mod))%mod;
sum=(sum*A)%mod;
}
printf("%I64d\n",sum);
}
int main()
{
while(scanf("%I64d%I64d",&a,&b)!=EOF)
{
if(a==)
{
printf("0\n");
continue;
}
else if(a==||b==)
{
printf("1\n");
continue;
}
ll t=a;
top=;
memset(num,,sizeof(num));
for(int i=; i*i<=a; i++)
{
if(t%i==)
{
num[top]++;
ans[top]=i;
t/=i;
while(t%i==)
{
num[top]++;
t/=i;
}
top++;
}
}
if(t>)
{
num[top]++;
ans[top++]=t;
}
for(int i=; i<top; i++)
{
num[i]*=b;
}
solve();
}
return ;
}
POJ1845:Sumdiv(求因子和+逆元+质因子分解)好题的更多相关文章
- HDU1452:Happy 2004(求因子和+分解质因子+逆元)上一题的简单版
题目链接:传送门 题目要求:求S(2004^x)%29. 题目解析:因子和函数为乘性函数,所以首先质因子分解s(2004^x)=s(2^2*x)*s(3^x)*s(167^x); 因为2与29,166 ...
- ATcoder E - Flatten 质因子分解求LCM
题解:其实就是求n个数的lcm,由于数据特别大,求lcm时只能用质因子分解的方法来求. 质因子分解求lcm.对n个数每个数都进行质因子分解,然后用一个数组记录某个质因子出现的最大次数.然后累乘pow( ...
- POJ 1845 Sumdiv(求因数和 + 逆元)题解
题意:给你a,b,要求给出a^b的因子和取模9901的结果. 思路:求因子和的方法:任意A = p1^a1 * p2^a2 ....pn^an,则因子和为sum =(1 + p1 + p1^2 + . ...
- BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]
1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所 ...
- poj1845 Sumdiv
poj1845 Sumdiv 数学题 令人痛苦van分的数学题! 题意:求a^b的所有约数(包括1和它本身)之和%9901 这怎么做呀!!! 百度:约数和定理,会发现 p1^a1 * p2^a2 * ...
- Lightoj-1356 Prime Independence(质因子分解)(Hopcroft-Karp优化的最大匹配)
题意: 找出一个集合中的最大独立集,任意两数字之间不能是素数倍数的关系. 思路: 最大独立集,必然是二分图. 最大数字50w,考虑对每个数质因子分解,然后枚举所有除去一个质因子后的数是否存在,存在则建 ...
- LightOJ1138 —— 阶乘末尾0、质因子分解
题目链接:https://vjudge.net/problem/LightOJ-1138 1138 - Trailing Zeroes (III) PDF (English) Statistic ...
- LightOJ1336 Sigma Function —— 质因子分解、约数和为偶数
题目链接:https://vjudge.net/problem/LightOJ-1336 1336 - Sigma Function PDF (English) Statistics Forum ...
- P2043 质因子分解
P2043 质因子分解 题目描述 对N!进行质因子分解. 输入输出格式 输入格式: 输入数据仅有一行包含一个正整数N,N<=10000. 输出格式: 输出数据包含若干行,每行两个正整数p,a,中 ...
随机推荐
- WPF 跟踪命令和撤销命令(复原)
WPF 命令模型缺少一个特性是复原命令.尽管提供了一个 ApplicationCommands.Undo 命令,但是该命令通常被用于编辑控件(如 TextBox 控件),以维护它们自己的 Undo 历 ...
- swift开发之 -- ? 和 ! 的作用
记录下这个知识点: 一般我们在一下两种情况会遇到 ? 和 !的使用 1,声明变量时 var number:Int? var str:String? 2,在对变量进行操作时 number?.hasVal ...
- linux安装nagios客户端
( 安装到 被监控的机器上)新增用户和组 useradd nagiosgroupadd nagcmd usermod -a -G nagcmd nagios (如果安装中报没有c编译器,就 yum i ...
- set集合操作【python】
set集合操作包括: >>> x=set("123defj89") >>> y=set("ab34e6jh9") >& ...
- zookeeper集群的安装和配置
Zookeeper的目的是封装好复杂易出错的关键服务,将简单易用的接口和性能高效.功能稳定的系统提供给用户.Zookeeper有两种运行模式,单机模式(Standalone)和集群模式(Distrib ...
- Oracle里 用sql*plus 登陆时,用户名和密码是多少啊?
Oracle里sql*plus的用户名即system用户,密码是自己设置的密码. 如果密码忘记,可通过如下方法重置. 1.win键+R键,输入cmd,打开命令提示符. 2.输入sqlplus /nol ...
- 如何搭建本地WordPress
今天就来介绍一下如何在Windows下搭建本地WordPress. 安装前准备 1.正常的电脑 2.PHPNow http://www.phpnow.org 这里面的PHPNow环境包其实包含了常见 ...
- scss语法
SCSS其实就是SASS新语法, 增强了对CSS3语法的支持 1.变量(Variables) /*声明变明*/ $color: #333; $bgcolor:#f36; /*引用变量*/ body { ...
- Floyd求最小环并求不同最小环的个数
FZU2090 旅行社的烦恼 Time Limit: 2000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u [Subm ...
- Fiddler关闭自动更新
1,fiddler 启动时老弹出要更新,但不想更新,可以这样设置 Tools-Optons->General 把第一个√去掉