KNN算法之图像处理一
KNN:
1.数据挖掘分类技术中最简单的方法之一。
2.也称为邻近算法,K最近邻分类算法
3.每个样本都可以用它最接近的k个邻居来代表
4.一般,距离使用欧式距离或曼哈顿距离(通常,k≤20)
python代码实现
例子:
已有的分类数据:
A:(1.0,2.0)
A:(1.2,0.1)
B:(0.1,1.4)
B:(0.3,3.5)
测试数据:(1.1,0.3)
推测结论(正确):A
代码:
from array import array from numpy import *
import operator ## 给出训练数据以及对应的类别
def createDataset():
group = array([[1.0,2.0],[1.2,0.1],[0.1,1.4],[0.3,3.5]])
labels = ['A','A','B','B']
return group,labels ###通过KNN进行分类
def classify(input,dataSet,label,k):
dataSize = dataSet.shape[0]
####计算欧式距离
diff = tile(input,(dataSize,1))-dataSet
sqdiff = diff ** 2
squareDist = sum(sqdiff,axis=1)###行向量分别相加,从而得到新的一个行向量
dist = squareDist ** 0.5 ##对距离进行排序
sortedDisIndex = argsort(dist)##argsort()根据元素的值从大到小对元素进行排序,返回下标 classCount={}
for i in range(k):
voteLabel =label[sortedDisIndex[i]]
###对选取的k个样本所属的类别个数进行统计
classCount[voteLabel] = classCount.get(voteLabel,0) + 1
###选取出现的类别次数最多的类别
maxCount = 0
for key,value in classCount.items():
if value > maxCount:
maxCount =value
classes =key return classes ##函数入口
if __name__ == '__main__':
dataSet,labels = createDataset()
input = array([1.1,0.3])
K=3
output = classify(input,dataSet,labels,K)
print("测试数据为:",input,"分类结果为:",output)
运行结果:

KNN算法之图像处理一的更多相关文章
- KNN算法之图像处理二
1.看了诸多博客,初步得到结论是:KNN不适合做图像分类. 2.如果偏要用此方法进行图像分类,距离计算为:对应的每个像素代表的像素值进行绝对差值计算,最后求和.这就是“图像的距离”
- 机器学习--kNN算法识别手写字母
本文主要是用kNN算法对字母图片进行特征提取,分类识别.内容如下: kNN算法及相关Python模块介绍 对字母图片进行特征提取 kNN算法实现 kNN算法分析 一.kNN算法介绍 K近邻(kNN,k ...
- 机器学习实战 之 KNN算法
现在 机器学习 这么火,小编也忍不住想学习一把.注意,小编是零基础哦. 所以,第一步,推荐买一本机器学习的书,我选的是Peter harrigton 的<机器学习实战>.这本书是基于pyt ...
- KNN 算法-实战篇-如何识别手写数字
公号:码农充电站pro 主页:https://codeshellme.github.io 上篇文章介绍了KNN 算法的原理,今天来介绍如何使用KNN 算法识别手写数字? 1,手写数字数据集 手写数字数 ...
- 【Machine Learning】KNN算法虹膜图片识别
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...
- KNN算法
1.算法讲解 KNN算法是一个最基本.最简单的有监督算法,基本思路就是给定一个样本,先通过距离计算,得到这个样本最近的topK个样本,然后根据这topK个样本的标签,投票决定给定样本的标签: 训练过程 ...
- kNN算法python实现和简单数字识别
kNN算法 算法优缺点: 优点:精度高.对异常值不敏感.无输入数据假定 缺点:时间复杂度和空间复杂度都很高 适用数据范围:数值型和标称型 算法的思路: KNN算法(全称K最近邻算法),算法的思想很简单 ...
- 什么是 kNN 算法?
学习 machine learning 的最低要求是什么? 我发觉要求可以很低,甚至初中程度已经可以. 首先要学习一点 Python 编程,譬如这两本小孩子用的书:[1][2]便可. 数学方面 ...
- 数据挖掘之KNN算法(C#实现)
在十大经典数据挖掘算法中,KNN算法算得上是最为简单的一种.该算法是一种惰性学习法(lazy learner),与决策树.朴素贝叶斯这些急切学习法(eager learner)有所区别.惰性学习法仅仅 ...
随机推荐
- HTML5之拖拽
HTML5拖放 拖放(Drag和drop)是H5标准的组成部分 此处需具备js基础知识及其H5拖拽部分相关方法 在拖动目标上触发事件 (源元素): ondragstart - 用户开始拖动元素时触发 ...
- FLINK流计算拓扑任务代码分析<二>
首先 是 StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment(); 我们在编写 fl ...
- STM32 HAL库学习系列第3篇 常使用的几种延时方式
1 自带的hal_delay 函数 毫秒级延迟 void HAL_Delay(__IO uint32_t Delay) { uint32_t tickstart = HAL_GetTick( ...
- [转] JetBrains Products License Server,适用RubyMine、Goland等
原文:http://jetbrains.license.laucyun.com/ Working Server http://jetbrains.license.laucyun.com (Lower ...
- 算法训练 K好数(C/C++)AC码
蓝桥杯 算法训练 K好数 AC码 题目要求: 算法训练 K好数 问题描述 如果一个自然数N的K进制表示中任意的相邻的两位都不是相邻的数字,那么我们就说这个数是K好数.求L位K进制数中K好数的数目.例如 ...
- Python学习笔记——常用的内置函数
一.yield def EricReadlines(): seek = 0 while True: with open('D:/temp.txt','r') as f: f.seek(seek) da ...
- 20155220 2016-2017-2《Java程序设计》课程总结
20155220 2016-2017-2<Java程序设计>课程总结 每周作业链接汇总 预备作业1:师生关系 预备作业2:优秀技能经验 预备作业3:虚拟机linux初接触 第一周学习总结: ...
- 20155239 实验四 Android程序设计
20155239 实验四 Android程序设计 目录 第24章:初识Android 任务一: 完成Hello World, 要求修改res目录中的内容,Hello World后要显示自己的学号 学习 ...
- day1 HTML - <head>
1.html是什么? 超文本标记语言(Hypertext Markup Language,HTML) <!DOCTYPE html> <html lang="en" ...
- Qt 利用XML文档,写一个程序集合 一
接到领导需求安排,说公司未来的硬件设备会越来越多,与每个设备对应的设备检测和设置程序也会增多.导致软甲太多,不好掌控.所以希望做一个完整的软件,但是呢,每个子程序还得独立,应为每个用户购买的设备不是一 ...