朴素贝叶斯

算法介绍:

朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法。

朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,在没有其它可用信息下,我们会选择条件概率最大的类别作为此待分类项应属的类别。

朴素贝叶斯分类的正式定义如下:

1、设 为一个待分类项,而每个a为x的一个特征属性。

2、有类别集合 。

3、计算 。

4、如果 ,则 。

那么现在的关键就是如何计算第3步中的各个条件概率。我们可以这么做:

1、找到一个已知分类的待分类项集合,这个集合叫做训练样本集。

2、统计得到在各类别下各个特征属性的条件概率估计。即

3、如果各个特征属性是条件独立的,则根据贝叶斯定理有如下推导:

因为分母对于所有类别为常数,因为我们只要将分子最大化皆可。又因为各特征属性是条件独立的,所以有:

spark.ml现在支持多项朴素贝叶斯和伯努利朴素贝叶斯。

参数:

featuresCol:

类型:字符串型。

含义:特征列名。

labelCol:

类型:字符串型。

含义:标签列名。

modelType:

类型:字符串型。

含义:模型类型(区分大小写)。

predictionCol:

类型:字符串型。

含义:预测结果列名。

probabilityCol:

类型:字符串型。

含义:用以预测类别条件概率的列名。

rawPredictionCol:

类型:字符串型。

含义:原始预测。

smoothing:

类型:双精度型。

含义:平滑参数。

thresholds:

类型:双精度数组型。

含义:多分类预测的阀值,以调整预测结果在各个类别的概率。

示例:

Scala:

import org.apache.spark.ml.classification.NaiveBayes
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator // Load the data stored in LIBSVM format as a DataFrame.
val data = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt") // Split the data into training and test sets (30% held out for testing)
val Array(trainingData, testData) = data.randomSplit(Array(0.7, 0.3), seed = 1234L) // Train a NaiveBayes model.
val model = new NaiveBayes()
.fit(trainingData) // Select example rows to display.
val predictions = model.transform(testData)
predictions.show() // Select (prediction, true label) and compute test error
val evaluator = new MulticlassClassificationEvaluator()
.setLabelCol("label")
.setPredictionCol("prediction")
.setMetricName("accuracy")
val accuracy = evaluator.evaluate(predictions)
println("Accuracy: " + accuracy)

Java:

import org.apache.spark.ml.classification.NaiveBayes;
import org.apache.spark.ml.classification.NaiveBayesModel;
import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession; // Load training data
Dataset<Row> dataFrame =
spark.read().format("libsvm").load("data/mllib/sample_libsvm_data.txt");
// Split the data into train and test
Dataset<Row>[] splits = dataFrame.randomSplit(new double[]{0.6, 0.4}, 1234L);
Dataset<Row> train = splits[];
Dataset<Row> test = splits[]; // create the trainer and set its parameters
NaiveBayes nb = new NaiveBayes();
// train the model
NaiveBayesModel model = nb.fit(train);
// compute accuracy on the test set
Dataset<Row> result = model.transform(test);
Dataset<Row> predictionAndLabels = result.select("prediction", "label");
MulticlassClassificationEvaluator evaluator = new MulticlassClassificationEvaluator()
.setMetricName("accuracy");
System.out.println("Accuracy = " + evaluator.evaluate(predictionAndLabels));

Python:

from pyspark.ml.classification import NaiveBayes
from pyspark.ml.evaluation import MulticlassClassificationEvaluator # Load training data
data = spark.read.format("libsvm") \
.load("data/mllib/sample_libsvm_data.txt")
# Split the data into train and test
splits = data.randomSplit([0.6, 0.4], )
train = splits[]
test = splits[] # create the trainer and set its parameters
nb = NaiveBayes(smoothing=1.0, modelType="multinomial") # train the model
model = nb.fit(train)
# compute accuracy on the test set
result = model.transform(test)
predictionAndLabels = result.select("prediction", "label")
evaluator = MulticlassClassificationEvaluator(metricName="accuracy")
print("Accuracy: " + str(evaluator.evaluate(predictionAndLabels)))

朴素贝叶斯算法原理及Spark MLlib实例(Scala/Java/Python)的更多相关文章

  1. 朴素贝叶斯算法源码分析及代码实战【python sklearn/spark ML】

    一.简介 贝叶斯定理是关于随机事件A和事件B的条件概率的一个定理.通常在事件A发生的前提下事件B发生的概率,与在事件B发生的前提下事件A发生的概率是不一致的.然而,这两者之间有确定的关系,贝叶斯定理就 ...

  2. 【数据挖掘】朴素贝叶斯算法计算ROC曲线的面积

    题记:          近来关于数据挖掘学习过程中,学习到朴素贝叶斯运算ROC曲线.也是本节实验课题,roc曲线的计算原理以及如果统计TP.FP.TN.FN.TPR.FPR.ROC面积等等.往往运用 ...

  3. Python机器学习笔记:朴素贝叶斯算法

    朴素贝叶斯是经典的机器学习算法之一,也是为数不多的基于概率论的分类算法.对于大多数的分类算法,在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同.比如决策树,KNN,逻辑回归,支持向 ...

  4. Machine Learning in Action(3) 朴素贝叶斯算法

    贝叶斯决策一直很有争议,今年是贝叶斯250周年,历经沉浮,今天它的应用又开始逐渐活跃,有兴趣的可以看看斯坦福Brad Efron大师对其的反思,两篇文章:“Bayes'Theorem in the 2 ...

  5. 机器学习---用python实现朴素贝叶斯算法(Machine Learning Naive Bayes Algorithm Application)

    在<机器学习---朴素贝叶斯分类器(Machine Learning Naive Bayes Classifier)>一文中,我们介绍了朴素贝叶斯分类器的原理.现在,让我们来实践一下. 在 ...

  6. 什么是机器学习的分类算法?【K-近邻算法(KNN)、交叉验证、朴素贝叶斯算法、决策树、随机森林】

    1.K-近邻算法(KNN) 1.1 定义 (KNN,K-NearestNeighbor) 如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类 ...

  7. 朴素贝叶斯算法下的情感分析——C#编程实现

    这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Pr ...

  8. 朴素贝叶斯算法的python实现

    朴素贝叶斯 算法优缺点 优点:在数据较少的情况下依然有效,可以处理多类别问题 缺点:对输入数据的准备方式敏感 适用数据类型:标称型数据 算法思想: 朴素贝叶斯比如我们想判断一个邮件是不是垃圾邮件,那么 ...

  9. C#编程实现朴素贝叶斯算法下的情感分析

    C#编程实现 这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Lang ...

随机推荐

  1. dedecms的arclist循环中判断第一个li添加css,否则不加

    dedecms的arclist循环中,判断如果是第一个li,则添加固定的css,否则不加   写法如下: {dede:arclist row=4 flag='p'} <li [field:glo ...

  2. 非常不错的前端框架Kendo-ui

    近期公司在做重构,准备换前端框架由Extjs换kendo-ui,问什么要换框架呢?主要有以下几个原因: Extjs太重,偏向后端语言,前端写起来费劲 Extjs执行太慢(这是主要原因),因为Extjs ...

  3. NHibernate初学四之关联一对一关系

    1:数据库脚本,创建两张表T_Area.T_Unit,表示一个单位对应一个地区,在单位表中有个AreaID为T_Area表中的ID: CREATE TABLE [dbo].[T_Area]( [ID] ...

  4. Windows下重置Mysql密码

    1.首先停止正在运行的MySQL进程 >net stop mysql 如未加载为服务,可直接在进程管理器或者服务中进行关闭. 2.以安全模式启动MySQL进入mysql目录在命令行下运行 > ...

  5. 当div没有设置宽度,使用width的fit-content和margin:auto实现元素的水平居中

    当我们做水平居中的时候,会有许多方法,margin:0 auto,或者test-align:center,以及flex布局.当元素的width不固定的时候,我们如何实现水平居中呢,代码如下: < ...

  6. 当JS出现的Cannot read property 'XXX' of null错误

    由于在加载JS的时候,页面还未加载完成,就出现了这样的错误.解决方法很简单,将这段 js 放到页面的最下面,等到所以页面加载完成时,再加载这段JS.

  7. JS 获取中英字符串字节长度

    正则匹配中文字: 这里限定中文字的范围,一般的使用是没什么问题的.如果要求十分严格的话,那么就只能使用更加严谨的代码匹配了 1:/([^\u0000-\u00FF])/g 2:/[^\x00-\xff ...

  8. [SQL] 理解SQL SERVER中的逻辑读,预读和物理读

    SQL SERVER数据存储的形式 在谈到几种不同的读取方式之前,首先要理解SQL SERVER数据存储的方式.SQL SERVER存储的最小单位为页(Page).每一页大小为8k,SQL SERVE ...

  9. java如何计算两个日期之间相差多少天?

    java如何计算两个日期之间相差多少天? public static void main(String [] args) { Date now = new Date(); Calendar cal = ...

  10. java反射(一)

    在JDK中,主要由以下类实现java反射机制:Class类:代表一个类,Filed类:代表类的成员变量,Method类:代表类的方法,Constructor类:代表类的构造方法,Array类:提供平了 ...