https://vjudge.net/problem/UVA-10891

题意:

有一个长度为n的整数序列,两个游戏者A和B轮流取数,A先取。每次玩家只能从左端或者右端取任意数量个数,但不能两端都取。所有数都被取走后游戏结束,然后统计每个人取走的所有数之和,作为各自的得分。两个人采取的策略都是让自己的得分尽量高,并且两个人都足够聪明,求A的得分减去B的得分后的结果。

思路:

不管是轮到谁取数,都是在一个序列中从左边或右边开始取最大值。

那么我们就令d【i】【j】表示先手在【i~j】序列中所能取到的最大值。

状态转移时,枚举从左端开始取k个数和从右端开始取k个数即可。

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<sstream>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#include<map>
using namespace std;
typedef long long LL;
typedef pair<int,int> pll;
const int INF=0x3f3f3f3f;
const int maxn=+; int n;
int a[maxn];
int sum[maxn];
int vis[maxn][maxn];
int d[maxn][maxn]; int dp(int i,int j)
{
if(vis[i][j]) return d[i][j];
vis[i][j]=; int m=;
for(int k=i+;k<=j;k++) m=min(m,dp(k,j));
for(int k=j-;k>=i;k--) m=min(m,dp(i,k));
d[i][j]=sum[j]-sum[i-]-m;
return d[i][j];
} int main()
{
//freopen("D:\\input.txt","r",stdin);
while(~scanf("%d",&n) && n)
{
sum[]=;
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
sum[i]=sum[i-]+a[i];
} memset(vis,,sizeof(vis));
printf("%d\n",*dp(,n)-sum[n]);
}
return ;
}

UVa 10891 Sum游戏的更多相关文章

  1. UVA 10891 SUM游戏 DP

    刚看到这个题目不知道怎么个DP法,有点难想到 解法如下 设置dp[i][j]代表i到j这段子序列能获得的最大值,这样,枚举m=min(m,dp[i+1到j][j],dp[i][i到j-1]),m就代表 ...

  2. 09_Sum游戏(UVa 10891 Game of Sum)

    问题来源:刘汝佳<算法竞赛入门经典--训练指南> P67 例题28: 问题描述:有一个长度为n的整数序列,两个游戏者A和B轮流取数,A先取,每次可以从左端或者右端取一个或多个数,但不能两端 ...

  3. [题解]UVa 10891 Game of Sum

    在游戏的任何时刻剩余的都是1 - n中的一个连续子序列.所以可以用dp[i][j]表示在第i个数到第j个数中取数,先手的玩家得到的最大的分值.因为两个人都很聪明,所以等于自己和自己下.基本上每次就都是 ...

  4. uva 10891 Game of Sum(区间dp)

    题目连接:10891 - Game of Sum 题目大意:有n个数字排成一条直线,然后有两个小伙伴来玩游戏, 每个小伙伴每次可以从两端(左或右)中的任意一端取走一个或若干个数(获得价值为取走数之和) ...

  5. UVa 10891 Game of Sum - 动态规划

    因为数的总和一定,所以用一个人得分越高,那么另一个人的得分越低. 用$dp[i][j]$表示从$[i, j]$开始游戏,先手能够取得的最高分. 转移通过枚举取的数的个数$k$来转移.因为你希望先手得分 ...

  6. UVA 10891 Game of Sum(区间DP(记忆化搜索))

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  7. UVA 10891 Game of Sum

    题目大意就是有一个整数串,有两个人轮流取,每次可以取走一个前缀或后缀.两人都足够聪明,且都会使自己收益最大.求取完后先手比后手多多少. 每次我看见上面那句就会深感自己的愚笨无知. 所以来推推性质? 1 ...

  8. UVa 10891 - Game of Sum 动态规划,博弈 难度: 0

    题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...

  9. UVA - 10891 Game of Sum 区间DP

    题目连接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=19461 Game of sum Description This ...

随机推荐

  1. pvm虚拟机基本原理

    零.绪论:特别鸣谢下文博客,自己博客是对这篇博客的学习笔记: 大佬webber博客:https://www.cnblogs.com/webber1992/p/6597166.html 一.三种文件: ...

  2. 键盘event.which属性

    IE中,只有keyCode属性,而FireFox中有which和charCode属性 event.which属性对DOM原生的event.keyCode和event.charCode进行了标准化. f ...

  3. SHTML 教程

    什么是 SHTML 使用SSI(Server Side Include)的html文件扩展名,SSI(Server Side Include),通常称为“服务器端嵌入”或者叫“服务器端包含”,是一种类 ...

  4. 监控linux流量shell版

    想要实时查看linux流量情况,又不想再去下第三方工具,可以直接写脚步运行! 系统:centos 6.5 原理:从/proc/net/dev中获取到流量情况,再通过换算并除以间隔时间来得到流量单位M ...

  5. KM算法(最优匹配)

    hdu2255 奔小康赚大钱 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) T ...

  6. 一步步从Spring Framework装配掌握SpringBoot自动装配

    目录 Spring Framework模式注解 Spring Framework@Enable模块装配 Spring Framework条件装配 SpringBoot 自动装配 本章总结 Spring ...

  7. 【转载】web开发中 web 容器的作用(如tomcat)

    我们讲到servlet可以理解服务器端处理数据的java小程序,那么谁来负责管理servlet呢?这时候我们就要用到web容器.它帮助我们管理着servlet等,使我们只需要将重心专注于业务逻辑. 什 ...

  8. couldn't connect to host

    “couldn't connect to host” 这样的错误可能是主机不可到达,或者端口不可到达. ping OK只代表主机可以到达. 端口不可到达可能是由于HTTP 服务器未启动或者监听在其他端 ...

  9. poj1821 Fence【队列优化线性DP】

    Fence Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6122   Accepted: 1972 Description ...

  10. tools-eclipse-001-如何安装插件

    插件的安装方法大体有以下三种: 第一种:直接复制法: 假设你的Eclipse的在(C:\eclipse), 解压你下载的 eclipse 插件或者安装eclipse 插件到指定目录AA(c:\AA)文 ...