aggregateByKey(zeroValue)(seqOp, combOp, [numTasks])

aggregateByKey(zeroValue)(seqOp, combOp, [numTasks]) When called on a dataset of (K, V) pairs, returns a dataset of (K, U) pairs where the values for each key are aggregated using the given combine functions and a neutral "zero" value. Allows an aggregated value type that is different than the input value type, while avoiding unnecessary allocations. Like in groupByKey, the number of reduce tasks is configurable through an optional second argument. 

/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type, U, than the type of the values in this RDD,
* V. Thus, we need one operation for merging a V into a U and one operation for merging two U's,
* as in scala.TraversableOnce. The former operation is used for merging values within a
* partition, and the latter is used for merging values between partitions. To avoid memory
* allocation, both of these functions are allowed to modify and return their first argument
* instead of creating a new U.
*/
def aggregateByKey[U: ClassTag](zeroValue: U)(seqOp: (U, V) => U,
combOp: (U, U) => U): RDD[(K, U)]
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type, U, than the type of the values in this RDD,
* V. Thus, we need one operation for merging a V into a U and one operation for merging two U's,
* as in scala.TraversableOnce. The former operation is used for merging values within a
* partition, and the latter is used for merging values between partitions. To avoid memory
* allocation, both of these functions are allowed to modify and return their first argument
* instead of creating a new U.
*/
def aggregateByKey[U: ClassTag](zeroValue: U, numPartitions: Int)(seqOp: (U, V) => U,
combOp: (U, U) => U): RDD[(K, U)]
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type, U, than the type of the values in this RDD,
* V. Thus, we need one operation for merging a V into a U and one operation for merging two U's,
* as in scala.TraversableOnce. The former operation is used for merging values within a
* partition, and the latter is used for merging values between partitions. To avoid memory
* allocation, both of these functions are allowed to modify and return their first argument
* instead of creating a new U.
*/
def aggregateByKey[U: ClassTag](zeroValue: U, partitioner: Partitioner)(seqOp: (U, V) => U,
combOp: (U, U) => U): RDD[(K, U)]
def seq(a:Int,b:Int):Int={
println("seq: " + a + "\t" + b)
math.max(a,b)
} def comb(a:Int,b:Int):Int = {
println("comb: " + a + "\t" + b)
a+b
} val rdd = sc.parallelize(List((1,3),(1,2),(1,4),(2,3),(2,4),(2,5)))
rdd.aggregateByKey(0)(seq,comb).collect
rdd.aggregateByKey(6)(seq,comb).collect
scala> def seq(a:Int,b:Int):Int={
| println("seq: " + a + "\t" + b)
| math.max(a,b)
| }
seq: (a: Int, b: Int)Int scala> scala> def comb(a:Int,b:Int):Int = {
| println("comb: " + a + "\t" + b)
| a+b
| }
comb: (a: Int, b: Int)Int
scala> val rdd = sc.parallelize(List((1,3),(1,2),(1,4),(2,3),(2,4),(2,5)))
rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[11] at parallelize at <console>:26 scala> rdd.aggregateByKey(0)(seq,comb).collect
seq: 0 3
seq: 3 2
seq: 3 4
seq: 0 3
seq: 3 4
seq: 4 5
res20: Array[(Int, Int)] = Array((1,4), (2,5)) scala> rdd.aggregateByKey(6)(seq,comb).collect
seq: 6 3
seq: 6 2
seq: 6 4
seq: 6 3
seq: 6 4
seq: 6 5
res21: Array[(Int, Int)] = Array((1,6), (2,6))

但是为什么没有执行comb呢?

sortByKey([ascending], [numTasks])

sortByKey([ascending], [numTasks]) When called on a dataset of (K, V) pairs where K implements Ordered, returns a dataset of (K, V) pairs sorted by keys in ascending or descending order, as specified in the boolean ascending argument.
从下面的注释中可以看到在每一个partition中元素是有序的,但是在整个rdd中数据可能是无序的。
/**
* Sort the RDD by key, so that each partition contains a sorted range of the elements. Calling
* `collect` or `save` on the resulting RDD will return or output an ordered list of records
* (in the `save` case, they will be written to multiple `part-X` files in the filesystem, in
* order of the keys).
*/
// TODO: this currently doesn't work on P other than Tuple2!
def sortByKey(ascending: Boolean = true, numPartitions: Int = self.partitions.length)
: RDD[(K, V)]
val rdd = sc.parallelize(List((3,"sd"),(1,"fd"),(2,"dfh"),(4,"kjh"),(7,"kf"),(5,"nb"),(100,"jd"),(63,"mm"),(42,"kk"),(99,"ll"),(10,"ll"),(11,"ll"),(12,"ll")),1)
val rdd1 = rdd.sortByKey(true,1)
rdd1.collect
val rdd2 = rdd.sortByKey(true,3)
rdd2.foreachPartition(
x=>{
while(x.hasNext){
println(x.next)
}
println("============")
}
) val rdd2 = rdd.sortByKey(false,4)
val rdd2 = rdd.sortByKey(true,3)
rdd2.foreachPartition(
x=>{
while(x.hasNext){
println(x.next)
}
println("============")
}
)
scala> val rdd = sc.parallelize(List((3,"sd"),(1,"fd"),(2,"dfh"),(4,"kjh"),(7,"kf"),(5,"nb"),(100,"jd"),(63,"mm"),(42,"kk"),(99,"ll"),(10,"ll"),(11,"ll"),(12,"ll")),1)
rdd: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[24] at parallelize at <console>:26 scala> val rdd1 = rdd.sortByKey(true,1)
rdd1: org.apache.spark.rdd.RDD[(Int, String)] = ShuffledRDD[25] at sortByKey at <console>:28 scala> rdd1.collect
res42: Array[(Int, String)] = Array((1,fd), (2,dfh), (3,sd), (4,kjh), (5,nb), (7,kf), (10,ll), (11,ll), (12,ll), (42,kk), (63,mm), (99,ll), (100,jd)) scala> val rdd2 = rdd.sortByKey(true,3)
rdd2: org.apache.spark.rdd.RDD[(Int, String)] = ShuffledRDD[28] at sortByKey at <console>:28 scala> rdd2.foreachPartition(
| x=>{
| while(x.hasNext){
| println(x.next)
| }
| println("============")
| }
| )
(1,fd)
(2,dfh)
(3,sd)
(4,kjh)
(5,nb)
============
(7,kf)
(10,ll)
(11,ll)
(12,ll)
============
(42,kk)
(63,mm)
(99,ll)
(100,jd)
============ scala> val rdd2 = rdd.sortByKey(false,4)
rdd2: org.apache.spark.rdd.RDD[(Int, String)] = ShuffledRDD[34] at sortByKey at <console>:28 scala> rdd2.foreachPartition(
| x=>{
| while(x.hasNext){
| println(x.next)
| }
| println("============")
| }
| )
(100,jd)
(99,ll)
(63,mm)
============
(42,kk)
(12,ll)
(11,ll)
============
(10,ll)
(7,kf)
(5,nb)
============
(4,kjh)
(3,sd)
(2,dfh)
(1,fd)
============

sortBy(func,[ascending], [numTasks])

/**
* Return this RDD sorted by the given key function.
*/
def sortBy[K](
f: (T) => K,
ascending: Boolean = true,
numPartitions: Int = this.partitions.length)
(implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T]
val a = Array(9,2,8,1,5,6,4,7,3)
val rdd = sc.parallelize(a)
rdd.collect
rdd.sortBy(x=>x).collect
rdd.sortBy(x=>x,false,3).collect
scala> val a = Array(9,2,8,1,5,6,4,7,3)
a: Array[Int] = Array(9, 2, 8, 1, 5, 6, 4, 7, 3) scala> val rdd = sc.parallelize(a)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[35] at parallelize at <console>:28 scala> rdd.collect
res46: Array[Int] = Array(9, 2, 8, 1, 5, 6, 4, 7, 3) scala> rdd.sortBy(x=>x).collect
res49: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9) scala> rdd.sortBy(x=>x,false,3).collect
res50: Array[Int] = Array(9, 8, 7, 6, 5, 4, 3, 2, 1)

join(otherDataset, [numTasks])

join(otherDataset, [numTasks]) When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (V, W)) pairs with all pairs of elements for each key. Outer joins are supported through leftOuterJoin, rightOuterJoin, and fullOuterJoin

同SQL语句中join,leftOuterJoin同SQL中left outer join,rightOuterJoin同SQL语句中right outer join,fullOuterJoin同SQL语句中的full outer join

scala> val a = List((1,"a"),(2,"b"),(3,"c"))
a: List[(Int, String)] = List((1,a), (2,b), (3,c)) scala> val rdd1 = sc.parallelize(a)
rdd1: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[47] at parallelize at <console>:28 scala> val b = List((1,"A"),(2,"B"),(4,"D"))
b: List[(Int, String)] = List((1,A), (2,B), (4,D)) scala> val rdd2 = sc.parallelize(b)
rdd2: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[48] at parallelize at <console>:28 scala> val rdd = rdd1.join(rdd2)
rdd: org.apache.spark.rdd.RDD[(Int, (String, String))] = MapPartitionsRDD[51] at join at <console>:34 scala> rdd.collect
res51: Array[(Int, (String, String))] = Array((1,(a,A)), (2,(b,B))) scala> rdd1.leftOuterJoin(rdd2)
res52: org.apache.spark.rdd.RDD[(Int, (String, Option[String]))] = MapPartitionsRDD[54] at leftOuterJoin at <console>:35 scala> rdd1.leftOuterJoin(rdd2).collect
res53: Array[(Int, (String, Option[String]))] = Array((1,(a,Some(A))), (3,(c,None)), (2,(b,Some(B)))) scala> rdd1.rightOuterJoin(rdd2).collect
res54: Array[(Int, (Option[String], String))] = Array((4,(None,D)), (1,(Some(a),A)), (2,(Some(b),B))) scala> rdd1.fullOuterJoin(rdd2).collect
res55: Array[(Int, (Option[String], Option[String]))] = Array((4,(None,Some(D))), (1,(Some(a),Some(A))), (3,(Some(c),None)), (2,(Some(b),Some(B))))

不管是join,leftOuterJoin,rightOuterJoin还是fullOuterJoin,除上述入参为otherDataset外,还包含下面两种方式

(other: RDD[(K, W)], numPartitions: Int)
(other: RDD[(K, W)], partitioner: Partitioner)

cogroup(otherDataset, [numTasks])

cogroup(otherDataset, [numTasks]) When called on datasets of type (K, V) and (K, W), returns a dataset of (K, (Iterable<V>, Iterable<W>)) tuples. This operation is also called groupWith

/**
* For each key k in `this` or `other`, return a resulting RDD that contains a tuple with the
* list of values for that key in `this` as well as `other`.
*/
def cogroup[W](other: RDD[(K, W)]): RDD[(K, (Iterable[V], Iterable[W]))]
scala> val rdd1 = sc.parallelize(List((1,"a"),(2,"b"),(3,"c"),(1,"z")))
rdd1: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[0] at parallelize at <console>:24 scala> val rdd2 = sc.parallelize(List((1,"A"),(2,"B"),(2,"C"),(4,"D")))
rdd2: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[1] at parallelize at <console>:24 scala> val rdd = rdd1.cogroup(rdd2)
rdd: org.apache.spark.rdd.RDD[(Int, (Iterable[String], Iterable[String]))] = MapPartitionsRDD[3] at cogroup at <console>:28 scala> rdd.collect
res0: Array[(Int, (Iterable[String], Iterable[String]))] = Array((4,(CompactBuffer(),CompactBuffer(D))), (1,(CompactBuffer(a, z),CompactBuffer(A))), (3,(CompactBuffer(c),CompactBuffer())), (2,(CompactBuffer(b),CompactBuffer(B, C))))

cartesian(otherDataset)

cartesian(otherDataset) When called on datasets of types T and U, returns a dataset of (T, U) pairs (all pairs of elements). 
对两个RDD中元素进行笛卡尔积运算。

/**
* Return the Cartesian product of this RDD and another one, that is, the RDD of all pairs of
* elements (a, b) where a is in `this` and b is in `other`.
*/
def cartesian[U: ClassTag](other: RDD[U]): RDD[(T, U)]
scala> val rdd1 = sc.parallelize(Array(1,2,3,4,5))
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at parallelize at <console>:24 scala> val rdd2 = sc.parallelize(Array("A","B","C"))
rdd2: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[5] at parallelize at <console>:24 scala> val rdd = rdd1.cartesian(rdd2)
rdd: org.apache.spark.rdd.RDD[(Int, String)] = CartesianRDD[6] at cartesian at <console>:28 scala> rdd.collect
res1: Array[(Int, String)] = Array((1,A), (1,B), (1,C), (2,A), (2,B), (2,C), (3,A), (3,B), (3,C), (4,A), (4,B), (4,C), (5,A), (5,B), (5,C))

pipe(command, [envVars])

pipe(command, [envVars]) Pipe each partition of the RDD through a shell command, e.g. a Perl or bash script. RDD elements are written to the process's stdin and lines output to its stdout are returned as an RDD of strings. 
通过pipe运行外部程序,每个分区中的元素作为外部程序入参运行一次外部程序,而外部程序的输出有创建一个新的RDD。
/**
* Return an RDD created by piping elements to a forked external process.
*/
def pipe(command: String): RDD[String]
[root@localhost home]# more /home/test.sh
#!/bin/bash
echo "Running shell script"
RESULT=""
while read LINE
do
if [ -z ${LINE} ]
then
break
fi
RESULT=${RESULT}" "${LINE}
done echo ${RESULT} >> /home/out.txt
echo "========" >>/home/out.txt
val rdd = sc.parallelize(List("ab","cd","ef","gh","ij"),)
rdd.pipe("/home/test.sh").collect

结果:

rdd有两个分区,test.sh每次运行会输出一个“Running shell script”字符串,元素输出至/home/out.txt中。

scala> val rdd = sc.parallelize(List("ab","cd","ef","gh","ij"),)
rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[] at parallelize at <console>: scala> rdd.pipe("/home/test.sh").collect
res6: Array[String] = Array(Running shell script, Running shell script)
[root@localhost home]# more out.txt
ab cd
========
ef gh ij
========

coalesce(numPartitions)

coalesce(numPartitions) Decrease the number of partitions in the RDD to numPartitions. Useful for running operations more efficiently after filtering down a large dataset. 
减少RDD的partition数量,对过滤掉大量数据后进行算子操作高效运行非常有用。

/**
* Return a new RDD that is reduced into `numPartitions` partitions.
*
* This results in a narrow dependency, e.g. if you go from 1000 partitions
* to 100 partitions, there will not be a shuffle, instead each of the 100
* new partitions will claim 10 of the current partitions.
*
* However, if you're doing a drastic coalesce, e.g. to numPartitions = 1,
* this may result in your computation taking place on fewer nodes than
* you like (e.g. one node in the case of numPartitions = 1). To avoid this,
* you can pass shuffle = true. This will add a shuffle step, but means the
* current upstream partitions will be executed in parallel (per whatever
* the current partitioning is).
*
* Note: With shuffle = true, you can actually coalesce to a larger number
* of partitions. This is useful if you have a small number of partitions,
* say 100, potentially with a few partitions being abnormally large. Calling
* coalesce(1000, shuffle = true) will result in 1000 partitions with the
* data distributed using a hash partitioner.
*/
def coalesce(numPartitions: Int, shuffle: Boolean = false,
partitionCoalescer: Option[PartitionCoalescer] = Option.empty)
(implicit ord: Ordering[T] = null)
: RDD[T]
scala> val rdd = sc.parallelize(1 to 1000,1000)
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[10] at parallelize at <console>:24 scala> val rdd1 = rdd.filter(_%3 == 0)
rdd1: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[11] at filter at <console>:26 scala> rdd1.partitions.length
res7: Int = 1000 scala> rdd1.coalesce(3,false).partitions.length
res9: Int = 3

repartition(numPartitions)

repartition(numPartitions) Reshuffle the data in the RDD randomly to create either more or fewer partitions and balance it across them. This always shuffles all data over the network. 
该函数其实内部调用就是coalesce(numPartitions, shuffle = true)。
/**
* Return a new RDD that has exactly numPartitions partitions.
* Can increase or decrease the level of parallelism in this RDD. Internally, this uses
* a shuffle to redistribute data.
* If you are decreasing the number of partitions in this RDD, consider using `coalesce`,
* which can avoid performing a shuffle.
*/
def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
coalesce(numPartitions, shuffle = true)
}
repartitionAndSortWithinPartitions(partitioner)
 
repartitionAndSortWithinPartitions(partitioner) Repartition the RDD according to the given partitioner and, within each resulting partition, sort records by their keys. This is more efficient than calling repartition and then sorting within each partition because it can push the sorting down into the shuffle machinery. 
/**
* Repartition the RDD according to the given partitioner and, within each resulting partition,
* sort records by their keys.
*
* This is more efficient than calling `repartition` and then sorting within each partition
* because it can push the sorting down into the shuffle machinery.
*/
def repartitionAndSortWithinPartitions(partitioner: Partitioner): RDD[(K, V)]
class MyPartitioner(numParts:Int) extends org.apache.spark.Partitioner{
override def numPartitions: Int = numParts
override def getPartition(key: Any): Int = {
key.toString.toInt%numPartitions
}
} val rdd1 = sc.makeRDD(1 to 10,2)
val rdd2 = sc.makeRDD(1 to 10,2)
val rdd = rdd1.zip(rdd2) rdd.foreachPartition(
x=>{
while(x.hasNext){
println(x.next)
}
println("============")
}
) val rdd3 = rdd.repartitionAndSortWithinPartitions(new MyPartitioner(3)) rdd3.foreachPartition(
x=>{
while(x.hasNext){
println(x.next)
}
println("============")
}
)
scala> class MyPartitioner(numParts:Int) extends org.apache.spark.Partitioner{
| override def numPartitions: Int = numParts
| override def getPartition(key: Any): Int = {
| key.toString.toInt%numPartitions
| }
| }
defined class MyPartitioner scala> val rdd1 = sc.makeRDD(1 to 10,2)
rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[37] at makeRDD at <console>:24 scala> val rdd2 = sc.makeRDD(1 to 10,2)
rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[38] at makeRDD at <console>:24 scala> val rdd = rdd1.zip(rdd2)
rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ZippedPartitionsRDD2[39] at zip at <console>:28 scala> rdd.foreachPartition(
| x=>{
| while(x.hasNext){
| println(x.next)
| }
| println("============")
| }
| )
(1,1)
(2,2)
(3,3)
(4,4)
(5,5)
============
(6,6)
(7,7)
(8,8)
(9,9)
(10,10)
============ scala> val rdd3 = rdd.repartitionAndSortWithinPartitions(new MyPartitioner(3))
rdd3: org.apache.spark.rdd.RDD[(Int, Int)] = ShuffledRDD[40] at repartitionAndSortWithinPartitions at <console>:31 scala> rdd3.foreachPartition(
| x=>{
| while(x.hasNext){
| println(x.next)
| }
| println("============")
| }
| )
[Stage 17:> (0 + 1) / 3](3,3)
(6,6)
(9,9)
============
(1,1)
(4,4)
(7,7)
(10,10)
============
(2,2)
(5,5)
(8,8)
============
												

Spark RDD Transformation 简单用例(二)的更多相关文章

  1. Spark RDD Transformation 简单用例(三)

    cache和persist 将RDD数据进行存储,persist(newLevel: StorageLevel)设置了存储级别,cache()和persist()是相同的,存储级别为MEMORY_ON ...

  2. Spark RDD Action 简单用例(二)

    foreach(f: T => Unit) 对RDD的所有元素应用f函数进行处理,f无返回值./** * Applies a function f to all elements of this ...

  3. Spark RDD Transformation 简单用例(一)

    map(func) /** * Return a new RDD by applying a function to all elements of this RDD. */ def map[U: C ...

  4. Spark RDD Action 简单用例(一)

    collectAsMap(): Map[K, V] 返回key-value对,key是唯一的,如果rdd元素中同一个key对应多个value,则只会保留一个./** * Return the key- ...

  5. spark RDD transformation与action函数整理

    1.创建RDD val lines = sc.parallelize(List("pandas","i like pandas")) 2.加载本地文件到RDD ...

  6. spark rdd Transformation和Action 剖析

    1.看到 这篇总结的这么好, 就悄悄的转过来,供学习 wordcount.toDebugString查看RDD的继承链条 所以广义的讲,对任何函数进行某一项操作都可以认为是一个算子,甚至包括求幂次,开 ...

  7. PHP 下基于 php-amqp 扩展的 RabbitMQ 简单用例 (二) -- Topic Exchange 和 Fanout Exchange

    Topic Exchange 此模式下交换机,在推送消息时, 会根据消息的主题词和队列的主题词决定将消息推送到哪个队列. 交换机只会为 Queue 分发符合其指定的主题的消息. 向交换机发送消息时,消 ...

  8. spring事务详解(二)简单样例

    系列目录 spring事务详解(一)初探事务 spring事务详解(二)简单样例 spring事务详解(三)源码详解 spring事务详解(四)测试验证 spring事务详解(五)总结提高 一.引子 ...

  9. Spark基础:(二)Spark RDD编程

    1.RDD基础 Spark中的RDD就是一个不可变的分布式对象集合.每个RDD都被分为多个分区,这些分区运行在分区的不同节点上. 用户可以通过两种方式创建RDD: (1)读取外部数据集====> ...

随机推荐

  1. Android定位&地图&导航——基于百度地图实现的定位功能

    一.问题描述 LBS位置服务是android应用中重要的功能,应用越来越广泛,下面我们逐步学习和实现lbs相关的应用如定位.地图.导航等,首先我们看如何基于百度地图实现定位功能 二.配置环境 1.注册 ...

  2. 树莓派中编译Opencv3.4.1和OpenCVSharp库

    一.简介 本文主要讲在树莓派中编译Opencv3.4.1和OpenCVSharp库,方便C#开发人员可以通过Mono或者Netcore运行C#通过OpenCVSharp写的OpenCV库. 二.过程 ...

  3. Gitbook 命令行工具

    1.Gitbook 简介 1.1 Gitbook GitBook 是一个基于 Node.js 开发的命令行工具,使用它可以很方便的管理电子书,GitBook 是目前最流行的开源书籍写作方案. 使用 G ...

  4. SNF开发平台WinForm之十五-时间轴控件使用-SNF快速开发平台3.3-Spring.Net.Framework

    一.显示效果如下: 二.在控件库里选择UCTimeAxis 拖拽到窗体里. 三.加入以下代码,在load事件里进行调用就可以运行了. #region 给时间轴控件加载数据 private void U ...

  5. DataTable转成List集合

    项目开发中,经常会获取到DataTable对象,如何把它转化成一个List对象呢?前几天就碰到这个问题,网上搜索整理了一个万能类,用了泛型和反射的知识.共享如下: public class Model ...

  6. 【spark 深入学习 03】Spark RDD的蛮荒世界

    RDD真的是一个很晦涩的词汇,他就是伯克利大学的博士们在论文中提出的一个概念,很抽象,很难懂:但是这是spark的核心概念,因此有必要spark rdd的知识点,用最简单.浅显易懂的词汇描述.不想用学 ...

  7. sublime text 3 安装ES6插件

  8. 【Unity】ShareSDK、SMSSDK的基本使用与常见问题

    概要 测试使用ShareSDK的一些常用功能.包括: 用微博帐号做第三方登录 获取用户的帐号详细信息 获取好友列表 分享功能 测试使用SMSSDK插件,包括: 导入插件,解决包冲突 短信登录功能:发验 ...

  9. 【linux】——cscope

    cscope是一款linux下的软件,其功能主要是用在阅读代码,堪称Windows下的Source Insight,但是配合vim使用,效率无与伦比.如需了解其具体使用,请先安装vim,然后在终端执行 ...

  10. tensorflow模型量化

    tensorflow模型量化/DATA/share/DeepLearning/code/tensorflow/bazel-bin/tensorflow/tools/graph_transforms/t ...