题意: 5000组样例。 问你[1,n] 和 [1,m]中有多少对数的GCD的素因子个数小于p。
思路:
首先考虑一个相对简单的版本: [1,a] 和 [1,b] 有多少对的数  满足GCD <= d
首先定义两个函数:A(a,b,d) 表示 GCD(a,b) = d的对数,B(a,b,d)表示GCD(a,b) 是d的倍数的对数 易得 B(a,b,d) = (a/d)*(b/d) 根据容斥原理:
B(a,b,i) 前面的系数正是莫比乌斯函数的值。
那么公式可以写成:
A(a,b,1) =  u(1)*B(a,b,1) + u(2)*B(a,b,2) + u(3) *B(a,b,3) + u(4)*B(a,b,4) + u(5)*B(a,b,5) + u(6)*B(a,b,6)...........
A(a,b,2) =  u(1)*B(a,b,2) + u(2)*B(a,b,4) + u(3) *B(a,b,6) + u(4)*B(a,b,8) + u(5)*B(a,b,10) +u(6)*B(a,b,12).........
A(a,b,3) =  u(1)*B(a,b,3) + u(2)*B(a,b,6) + u(3) *B(a,b,9) + u(4)*B(a,b,12) + u(5)*B(a,b,15) +u(6)*B(a,b,18).......
A(a,b,4) =  u(1)*B(a,b,4) + u(2)*B(a,b,8) + u(3) *B(a,b,12) + u(4)*B(a,b,16) + u(5)*B(a,b,20) +u(6)*B(a,b,24).....
答案就是
A(a,b,1)+A(a,b,2)+A(a,b,3)+......A(a,b,d) =   u(1)*B(a,b,1)+(u(1)+u(2))*B(a,b,2) + ....... (u(1)+u(2)+u(3)+u(6))*B(a,b,6)........
可见A(a,b,d) 前的系数为  sigma(u(i)) (i为d的约数) =  C(a,b,d)
 
然后,这一题还有一个限制条件,就是要使素因子的个数小于等于p,那么我们定义这个函数D(a,b,d,p) 表示B(a,b,d) 前的系数,那么我们只要从C(a,b,d)中选出一些满足条件的系数即可。 用一个数组F[d][cnt] (cnt为素因子个数)记录,数组表示的是d的因子的素因子个数为cnt的影响因子大小。先计算完单个,再计算前缀和(接下来有用)。(我们可以知道只有那些素因数 小于等于p的才会用到B(a,b,d),因此只要在B(a,b,d)的位置留下他相应的值就ok了)接着,我们发现对于某个d,会满足B(a,b,d) = (B,a,b,d+x),而且  这个 x = min(a/(a/d),b/(b/d)) ,那么整个式子的计算会呈现块状,因此计算这个区间的时候可以用前缀和。
#include <iostream>
#include <algorithm>
#include <string.h>
#include <cstdio>
#include <vector>
using namespace std;
const int maxn=;
int mu[maxn];
int prime[maxn],primenum[maxn];
bool isprime[maxn];
int F[maxn][];
void getmu()
{
mu[]=;
memset(isprime,true,sizeof(isprime));
isprime[]=isprime[]=false;
int cnt=;
primenum[]=;
for(int i=; i<maxn; i++)
{
if(isprime[i])
{
prime[cnt++]=i;
mu[i]=-;
primenum[i]=;
}
for(int j=; j<cnt && (prime[j]*i)<maxn; j++)
{
primenum[i*prime[j]]=primenum[i]+;
mu[i*prime[j]]=-mu[i];
isprime[i*prime[j]]=false;
if( (i%prime[j]) == )
{
mu[i*prime[j]]=;break;
}
}
}
}
void getmF()
{
memset(F,,sizeof(F));
for(int i=; i<maxn; i++){
for(int j=i; j<maxn; j+=i)
{
F[j][primenum[i]]+=mu[j/i];
}
}
for(int i=; i<maxn; i++)
for(int j=; j<=;j++)
F[i][j]+=F[i-][j];
for(int i=; i<maxn; i++)
for(int j=; j<=; j++)
F[i][j]+=F[i][j-];
}
long long solve(int n,int m, int p)
{
long long ans=;
int ed=;
for(int i=; i<=n; i++)
{
ed=min( n/(n/i),m/(m/i));
ans+=1LL * ( F[ed][p]-F[i-][p] )*(n/i)*(m/i);
i=ed;
}
return ans;
}
int main()
{
getmu();
getmF();
int cas;
scanf("%d",&cas);
for(int cc=; cc<=cas; cc++)
{
int n,m,p;
scanf("%d%d%d",&n,&m,&p);
if(p>)
{
printf("%I64d\n",1LL*n*m); continue;
}
if(n>m)swap(n,m);
long long ans=solve(n,m,p);
printf("%I64d\n",ans);
} return ;
}

hdu4746莫比乌斯反演+分块的更多相关文章

  1. BZOJ 2301 Problem b(莫比乌斯反演+分块优化)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37166 题意:对于给出的n个询问,每次求有多少个数对(x,y),满 ...

  2. bzoj2301(莫比乌斯反演+分块)

    传送门:2301: [HAOI2011]Problem b 题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y ...

  3. BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)

    4407: 于神之怒加强版 Time Limit: 80 Sec  Memory Limit: 512 MBSubmit: 1067  Solved: 494[Submit][Status][Disc ...

  4. bzoj 2301 [HAOI2011]Problem b(莫比乌斯反演+分块优化)

    题意:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 1≤n≤50000,1≤a≤b≤50000, ...

  5. bzoj2301 [HAOI2011]Problem b【莫比乌斯反演 分块】

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减 ...

  6. ACdream 1148(莫比乌斯反演+分块)

    传送门:GCD SUM 题意:给出N,M执行如下程序:long long  ans = 0,ansx = 0,ansy = 0;for(int i = 1; i <= N; i ++)   fo ...

  7. BZOJ 2301 Problem b(莫比乌斯反演+分块优化)

    Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...

  8. JZYZOJ1518 [haoi2011]b 莫比乌斯反演 分块 容斥

    http://172.20.6.3/Problem_Show.asp?id=1518最开始只想到了n^2的写法,肯定要超时的,所以要对求gcd的过程进行优化.首先是前缀和容斥,很好理解.第二个优化大致 ...

  9. [bzoj2301]Problem b莫比乌斯反演+分块优化

    题意: $\sum\limits_{\begin{array}{*{20}{c}}{a < = x < = b}\\{c < = y < = d}\end{array}} {\ ...

随机推荐

  1. scrapy windows下出现importError:No module named 'win32api'

    scrapy windows下出现importError:No module named 'win32api'需安装 pip install pypiwin32

  2. 优云软件又双叒通过CMMI ML3评估 , 研发和质量管理水平创新高

    2017年第三季度,SEI授权的主任评估师对优云软件研发中心进行了CMMI软件能力成熟度模型评估,优云软件顺利通过复评. 这是继2011年12月优云软件首次通过CMMI ML3级的评估认证以来,第二次 ...

  3. 洛谷 P3684 机棚障碍Hangar Hurdles [CERC2016] 图论

    正解: 解题报告: 传送门! 首先不难想到这题主要有两个问题需要解决,一个是预处理出各个点的箱子半径最大值,一个是求ans 然后分别港下QwQ 首先关于预处理要说下昂 预处理有三种方法,分别港下 第一 ...

  4. nmap常用参数

    总结: 主机发现 -sn    防止NMAP端口扫描 -SP    TCP 半连接扫描,默认是通过80端口来发现主机的 -SA    ACK ping 扫描 -SU    UDP ping 扫描 不好 ...

  5. linux根文件系统制作,busybox启动流程分析

    分析 busybox-1.1.6 启动流程,并 制作一个小的根文件系统 源码百度云链接:https://pan.baidu.com/s/1tJhwctqj4VB4IpuKCA9m1g 提取码 :l10 ...

  6. 安装sqlserver2008中出现的问题小结

    安装完sqlserver2008时报了几个错,但是好歹装上了,但是我想使用sa用户登录,给我出现了这么一个错 标题: 连接到服务器------------------------------ 无法连接 ...

  7. 测试:fiddler使用

    Fiddler是个很强大的工具,很多新人可能不知道怎么用. 直接下载安装,然后打开电脑端的Fiddler,点击Tools > Fiddler Options,勾选上 Allow remote c ...

  8. VS Code 管理 .NET Core解决方案

    本练习要使用Visual studio code完成一个包含多个项目的解决方案,包括类库和Web项目.结合Visual Studio Code和.NET Core CLI,创建项目结构如下: pied ...

  9. mysql常用反斜杠命令

    mysql常用反斜杠命令 https://dev.mysql.com/doc/refman/5.7/en/mysql-commands.html https://dev.mysql.com/doc/r ...

  10. 实例讲解TP5中关联模型

    https://blog.csdn.net/github_37512301/article/details/75675054 一.关联模型在关系型数据库中,表之间有一对一.一对多.多对多的关系.在 T ...