http://www.spoj.com/problems/OPTM/

题意:

给出一张图,点有点权,边有边权

定义一条边的权值为其连接两点的异或和

定义一张图的权值为所有边的权值之和

已知部分点的点权,自定义其余点的点权

使图的权值最小,并在此基础上使点权和最小

输出点的权值

异或——按位做

那么题目就变成了已知一些点的点权为0/1,自定义剩余点的点权0/1

使01相遇的边最少

(01相遇指的是一条边连接的两点的点权不同)

我们建立最小割模型:

先不考虑第二问

源点向已知点的点权为0的点连正无穷的边

已知点的点权为1的点向汇点连正无穷的边

然后把原图加进去,原图中若存在u和v之间的边,就加入u向v,v向u 流量为1的边

这样最小割割的时候只会割流量为1的边,割一条边表示这条边连接的两点点权不同

最后在残量网络上,点与源点相连则代表点权为0,点与汇点相连代表点权为1

再来考虑第二问

第二问相当于最后残量网络上,点既可以与源点连又可以与汇点连的时候,选择与源点连

将所有不与源点相连的点x,加上源点向x流量为1的边

这样如果x最后选择与汇点相连,那么它就要多花费1的代价

这就使x尽可能的与源点相连

那么这岂不是影响了第一问的答案?

用点儿小技巧

原来是原图中若存在u和v之间的边,就加入u向v,v向u 流量为1的边

改成 原图中若存在u和v之间的边,就加入u向v,v向u 流量为10000的边

然后第一问相当于最最小割/10000

第二问相当于最小割%10000

最后查询与源点分离的点时,不是源点连出去的流量为1的边满流

而是dinic最后一次分层遍历遍历不到的点

S->2的边虽然满流,但是仍可以通过S->3->2 所以2是与源点相连的点

#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream> using namespace std; #define N 502
#define M 3001 const int inf=1e9; struct node
{
int u,v;
}e[]; int num[N]; int ans[N]; int front[N],to[M*],nxt[M*],cap[M*],tot;
int src,decc;
int lev[N],cur[N]; queue<int>q; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void add(int u,int v,int w)
{
to[++tot]=v; nxt[tot]=front[u]; front[u]=tot; cap[tot]=w;
to[++tot]=u; nxt[tot]=front[v]; front[v]=tot; cap[tot]=;
} bool bfs()
{
for(int i=src;i<=decc;++i) lev[i]=-,cur[i]=front[i];
while(!q.empty()) q.pop();
q.push(src);
lev[src]=;
int now;
while(!q.empty())
{
now=q.front();
q.pop();
for(int i=front[now];i;i=nxt[i])
if(cap[i] && lev[to[i]]==-)
{
lev[to[i]]=lev[now]+;
if(to[i]==decc) return true;
q.push(to[i]);
}
}
return false;
} int dinic(int now,int flow)
{
if(now==decc) return flow;
int rest=,delta;
for(int &i=cur[now];i;i=nxt[i])
if(cap[i] && lev[to[i]]>lev[now])
{
delta=dinic(to[i],min(flow-rest,cap[i]));
if(delta)
{
rest+=delta;
cap[i]-=delta; cap[i^]+=delta;
if(rest==flow) break;
}
}
if(rest!=flow) lev[now]=-;
return rest;
} int main()
{
int T,n,m,k,x;
// int flow;
// long long ans1,ans2;
read(T);
while(T--)
{
memset(num,-,sizeof(num));
memset(ans,,sizeof(ans));
//ans1=ans2=0;
tot=;
read(n); read(m);
for(int i=;i<=m;++i) read(e[i].u),read(e[i].v);
read(k);
for(int i=;i<=k;++i)
{
read(x);
read(num[x]);
}
decc=n+;
for(int bit=;bit<;++bit)
{
memset(front,,sizeof(front));
tot=;
for(int i=;i<=n;++i)
if(num[i]!=-)
{
if(num[i]&<<bit) add(i,decc,inf),add(src,i,);
else add(src,i,inf);
}
else add(src,i,);
for(int i=;i<=m;++i)
{
add(e[i].u,e[i].v,);
add(e[i].v,e[i].u,);
}
// flow=0;
while(bfs())
dinic(src,inf);
// ans1+=1LL*flow/10000*(1<<bit);
// ans2+=1LL*flow%10000*(1<<bit);
for(int i=;i<=n;++i)
if(lev[i]==-) ans[i]|=<<bit;
}
// printf("%lld\n%lld",ans1,ans2);
for(int i=;i<=n;++i) printf("%d\n",ans[i]);
}
}

SPOJ 839 OPTM - Optimal Marks (最小割)(权值扩大,灵活应用除和取模)的更多相关文章

  1. spoj 839 OPTM - Optimal Marks&&bzoj 2400【最小割】

    因为是异或运算,所以考虑对每一位操作.对于所有已知mark的点,mark的当前位为1则连接(s,i,inf),否则连(i,t,inf),然后其他的边按照原图连(u,v,1),(v,u,1),跑最大流求 ...

  2. 【BZOJ2400】Spoj 839 Optimal Marks 最小割

    [BZOJ2400]Spoj 839 Optimal Marks Description 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. ...

  3. 图论(网络流):SPOJ OPTM - Optimal Marks

    OPTM - Optimal Marks You are given an undirected graph G(V, E). Each vertex has a mark which is an i ...

  4. SPOJ OPTM - Optimal Marks

    OPTM - Optimal Marks no tags  You are given an undirected graph G(V, E). Each vertex has a mark whic ...

  5. The Minimum Cycle Mean in a Digraph 《有向图中的最小平均权值回路》 Karp

    文件链接 Karp在1977年的论文,讲述了一种\(O(nm)\)的算法,用来求有向强连通图中最小平均权值回路(具体问题请参照这里) 本人翻译(有删改): 首先任取一个节点 \(s\) ,定义 \(F ...

  6. 【BZOJ-2400】Spoj839Optimal Marks 最小割 + DFS

    2400: Spoj 839 Optimal Marks Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 567  Solved: 202[Submit ...

  7. SPOJ839 OPTM - Optimal Marks

    传送门 闵神讲网络流应用的例题,来水一水 要写出这道题,需要深入理解两个概念,异或和最小割. 异或具有相对独立性,所以我们把每一位拆开来看,即做大概$32$次最小割.然后累加即可. 然后是最小割把一张 ...

  8. spoj 1693 COCONUTS - Coconuts【最小割】

    s向所有信仰1的人连(s,i,1),所有信仰0的人连(i,t,1),对于朋友关系,连接双向边,流量为1.跑最大流的结果即为答案. 考虑这样做的意义.最小割就是把总点集分割为两个点集S,T,使得所有\( ...

  9. hdu 1565&hdu 1569(网络流--最小点权值覆盖)

    方格取数(1) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

随机推荐

  1. Kitematic - VirtualBox is not installed. Docker for windows 10

    Kitematic - VirtualBox is not installed. Docker for windows 10 https://github.com/docker/kitematic/i ...

  2. 从Silverlight到ExtJS再到BootStrap,DataTable(DataGrid)的样式格式化原理没变

    <table id="tableOrder" data-toolbar="tableBtnGroup" data-row-style="rowS ...

  3. 如何将数据库引擎配置为侦听多个 TCP 端口

    SQL Server 2005         为 SQL Server 启用 TCP/IP 后,数据库引擎将侦听连接点上是否有传入的连接(由 IP 地址和 TCP 端口号组成).下列步骤将创建一个表 ...

  4. node的consoidate的插件统一

    使用consolidate.ejs.的这种形式. let express = require('express'); let app = express(); app.set('views','返回的 ...

  5. shell 学习笔记二

    一.break命令 break命令允许跳出所有循环(终止执行后面的所有循环). 下面的例子中,脚本进入死循环直至用户输入数字大于5.要跳出这个循环,返回到shell提示符下,就要使用break命令. ...

  6. python成长之路五-文件操作

    1,文件操作 f = open("D:\种子.txt",encoding="utf-8",mode="r") # 打开一个种子.txt文件, ...

  7. hdu 3727 Jewel (可持久化线段树+bit)

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=3727 题意: 对一段序列进行四种操作: Insert x :在序列尾部插入一个x: Query_1 s ...

  8. RabbitMQ安装详解

    # RabbitMQ 消息中间件 一.安装:#安装epel源[EPEL (Extra Packages for Enterprise Linux,企业版Linux的额外软件包)rpm -Uvh htt ...

  9. 青蛙跳台阶(C、Python)

    C语言: /* ----------------------------------- 当n = 1, 只有1中跳法:当n = 2时,有两种跳法:当n = 3 时,有3种跳法:当n = 4时,有5种跳 ...

  10. luogu1965 转圈游戏 (快速幂)

    求(m*10^k+x)%n即可 #include<cstdio> #include<cstring> #include<algorithm> #define LL ...