numpy中的random模块包含了很多方法可以用来产生随机数,这篇文章将对random中的一些常用方法做一个总结。

1、numpy.random.rand(d0, d1, ..., dn)

作用:产生一个给定形状的数组(其实应该是ndarray对象或者是一个单值),数组中的值服从[0, 1)之间的均匀分布

参数:d0, d, ..., dn : int,可选。如果没有参数则返回一个float型的随机数,该随机数服从[0, 1)之间的均匀分布。

返回值:ndarray对象或者一个float型的值

例子

# [0, 1)之间均匀分布的随机数,3行2列
a = np.random.rand(3, 2)
print(a)
# 不提供形状
b = np.random.rand()
print(b)

输出:

[[0.26054323 0.28184468]
[0.7783674 0.71733674]
[0.90302256 0.49303252]]
0.6022098740124009

2、numpy.random.uniform(low=0.0, high=1.0, size=None)

作用:返回一个在区间[low, high)中均匀分布的数组,size指定形状。

参数

low, high:float型或者float型的类数组对象。指定抽样区间为[low, high),low的默认值为0.0,hign的默认值为1.0

size:int型或int型元组。指定形状,如果不提供size,则返回一个服从该分布的随机数。

例子

# 在[1, 10)之间均匀抽样,数组形状为3行2列
a = np.random.uniform(1, 10, (3, 2))
print(a)
# 不提供size
b = np.random.uniform(1, 10)
print(b)

输出:

[[5.16545387 6.3769087 ]
[9.98964899 7.88833885]
[1.37173855 4.19855075]]
3.899250175275188

3、numpy.random.randn(d0, d1, ..., dn)

作用:返回一个指定形状的数组,数组中的值服从标准正态分布(均值为0,方差为1)。

参数:d0, d, ..., dn : int,可选。如果没有参数,则返回一个服从标准正态分布的float型随机数。

返回值:ndarray对象或者float

例子

# 3行2列
a = np.random.randn(3, 2)
print(a)
# 不提供形状
b = np.random.randn()
print(b)

输出:

[[-1.46605527  0.35434705]
[ 0.43408199 0.02689309]
[ 0.48041554 1.62665755]]
-0.6291254375915813

4、numpy.random.normal(loc=0.0, scale=1.0, size=None)

作用:返回一个由size指定形状的数组,数组中的值服从 \(\mu=loc, \sigma=scale\) 的正态分布

参数

loc : float型或者float型的类数组对象,指定均值 \(\mu\)

scale : float型或者float型的类数组对象,指定标准差 \(\sigma\)

size : int型或者int型的元组,指定了数组的形状。如果不提供size,且loc和scale为标量(不是类数组对象),则返回一个服从该分布的随机数。

输出:ndarray对象或者一个标量

例子

# 标准正态分布,3行2列
a = np.random.normal(0, 1, (3, 2))
print(a)
# 均值为1,标准差为3
b = np.random.normal(1, 3)
print(b)

输出:

[[ 0.34912031 -0.08757564]
[-0.99753101 0.37441719]
[ 2.68072286 -1.03663963]]
5.770831320998463

5、numpy.random.randint(low, high=None, size=None, dtype='l')

作用:返回一个在区间[low, high)中离散均匀抽样的数组,size指定形状,dtype指定数据类型。

参数

low, high:int型,指定抽样区间[low, high)

size:int型或int型的元组,指定形状

dypte:可选参数,指定数据类型,比如int,int64等,默认是np.int

返回值:如果指定了size,则返回一个int型的ndarray对象,否则返回一个服从该分布的int型随机数。

例子

# 在[1, 10)之间离散均匀抽样,数组形状为3行2列
a = np.random.randint(1, 10, (3, 2))
print(a)
# 不提供size
b = np.random.randint(1, 10)
print(b)
# 指定dtype
c = np.random.randint(1, 10, dtype=np.int64)
print(c)
type(c)

输出:

[[3 1]
[3 3]
[5 8]]
6
2
numpy.int64

6、numpy.random.random(size=None)

作用:返回从[0, 1)之间均匀抽样的数组,size指定形状。

参数

size:int型或int型的元组,如果不提供则返回一个服从该分布的随机数

返回值:float型或者float型的ndarray对象

例子

# [0, 1)之间的均匀抽样,3行2列
a = np.random.random((3, 2))
print(a)
# 不指定size
b = np.random.random()
print(b)

输出:

[[0.80136714 0.63129059]
[0.04556679 0.04433006]
[0.09643599 0.53312761]]
0.32828505898057136

使用numpy产生随机数的更多方法可以参考官方文档

使用numpy产生随机数的更多相关文章

  1. numpy生成随机数

    如果你想说,我不想知道里面的逻辑和实现方法,只想要python生成随机数的代码,请移步本文末尾,最简单的demo帮你快速获取实现方法. 先开始背景故事说明: 在数据分析中,数据的获取是第一步,nump ...

  2. 基于numpy的随机数构造

    class numpy.random.RandomState(seed=None) RandomState 是一个基于Mersenne Twister算法的伪随机数生成类 RandomState 包含 ...

  3. 转 载python数据分析(1)-numpy产生随机数

    转自:http://blog.csdn.net/jinxiaonian11/article/details/53143141 在数据分析中,数据的获取是第一步,numpy.random 模块提供了非常 ...

  4. NumPy基础操作(3)——代数运算和随机数

    NumPy基础操作(3)--代数运算和随机数 (注:记得在文件开头导入import numpy as np) 目录: NumPy在矩阵运算中的应用 常用矩阵运算函数介绍 编程实现 利用NumPy生成随 ...

  5. 【转载】python 模块 - random生成随机数模块

    随机数种子 要每次产生随机数相同就要设置种子,相同种子数的Random对象,相同次数生成的随机数字是完全相同的: random.seed(1) 这样random.randint(0,6, (4,5)) ...

  6. python之numpy库[2]

    python-numpy csv文件的写入和存取 写入csv文件 CSV (Comma‐Separated Value, 逗号分隔值),是一种常见的文件格式,用来存储批量数据. 写入csv文件 np. ...

  7. [python]-数据科学库Numpy学习

    一.Numpy简介: Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针.这样为了保存一个简单的[1,2,3],需要有3 ...

  8. 数据分析与展示——NumPy数据存取与函数

    NumPy库入门 NumPy数据存取和函数 数据的CSV文件存取 CSV文件 CSV(Comma-Separated Value,逗号分隔值)是一种常见的文件格式,用来存储批量数据. np.savet ...

  9. 第一周——数据分析之表示 —— Numpy 数据存取与函数

    数据的CSV文件的存取 CSV文件:CSV (Comma‐Separated Value, 逗号分隔值) CSV是一种常见的文件格式,用来存储批量数据 np.savetxt(frame, array, ...

随机推荐

  1. python安装办法

    先我们来安装python 1.首先进入网站下载:点击打开链接(或自己输入网址https://www.python.org/downloads/),进入之后,选择64位下载. 2.下载完成后如下图所示 ...

  2. 为什么还原innobackupex备份后查看到的Executed_Gtid_Set与xtrabackup_binlog_info不一致

    基本环境:官方社区版MySQL 5.7.19,innobackupex version 2.4.8 一.什么不一致 1.1.不一致 首先使用下面脚本来构建Executed_Gtid_Set与xtrab ...

  3. linux space/mark设置

    参考链接: http://blog.csdn.net/zhaozh2000/article/details/6460223 串口数据的发送: 数据的发送: 数据位+检验位+停止位, 进行数据的发送.( ...

  4. js 组件化

    我的github样例:https://github.com/hzijone/javascript_module js 用对象的方式实现组件化. 1.对一个对象里增加方法的方式: 把模块的变量传给函数, ...

  5. G - Preparing for Exams

    题目链接: https://vjudge.net/contest/251958#problem/G 具体思路: 圆内四边形内角互补,所以,如图所示. 证明,三角形oda和三角形obc相似. 第一步,角 ...

  6. Android Handler面试解析

  7. CXF2.7整合spring发布webservice,返回值类型是Map和List<Map>类型

    在昨天研究了发布CXF发布webservice之后想着将以前的项目发布webservice接口,可是怎么也发布不起来,服务启动失败,原来是自己的接口有返回值类型是Map. 研究了一番之后,发现: we ...

  8. PP图和QQ图

     一. QQ图      分位数图示法(Quantile Quantile Plot,简称 Q-Q 图)       统计学里Q-Q图(Q代表分位数)是一个概率图,用图形的方式比较两个概率分布,把他们 ...

  9. 【vim】实时计算器

    在插入模式下,你可以使用 Ctrl+r 键然后输入 =,再输入一个简单的算式.按 Enter 键,计算结果就会插入到文件中.例如,尝试输入: Ctrl+r '=2+2' ENTER 然后计算结果&qu ...

  10. Paramiko 操作远端时无法切换目录的问题

    最近在用Paramiko 开发一款远程测试调试框架,结果发现目录怎么都无法切换,查了下原因,在http://bbs.chinaunix.net/thread-1675446-1-1.html看到了 P ...