numpy中的random模块包含了很多方法可以用来产生随机数,这篇文章将对random中的一些常用方法做一个总结。

1、numpy.random.rand(d0, d1, ..., dn)

作用:产生一个给定形状的数组(其实应该是ndarray对象或者是一个单值),数组中的值服从[0, 1)之间的均匀分布

参数:d0, d, ..., dn : int,可选。如果没有参数则返回一个float型的随机数,该随机数服从[0, 1)之间的均匀分布。

返回值:ndarray对象或者一个float型的值

例子

# [0, 1)之间均匀分布的随机数,3行2列
a = np.random.rand(3, 2)
print(a)
# 不提供形状
b = np.random.rand()
print(b)

输出:

[[0.26054323 0.28184468]
[0.7783674 0.71733674]
[0.90302256 0.49303252]]
0.6022098740124009

2、numpy.random.uniform(low=0.0, high=1.0, size=None)

作用:返回一个在区间[low, high)中均匀分布的数组,size指定形状。

参数

low, high:float型或者float型的类数组对象。指定抽样区间为[low, high),low的默认值为0.0,hign的默认值为1.0

size:int型或int型元组。指定形状,如果不提供size,则返回一个服从该分布的随机数。

例子

# 在[1, 10)之间均匀抽样,数组形状为3行2列
a = np.random.uniform(1, 10, (3, 2))
print(a)
# 不提供size
b = np.random.uniform(1, 10)
print(b)

输出:

[[5.16545387 6.3769087 ]
[9.98964899 7.88833885]
[1.37173855 4.19855075]]
3.899250175275188

3、numpy.random.randn(d0, d1, ..., dn)

作用:返回一个指定形状的数组,数组中的值服从标准正态分布(均值为0,方差为1)。

参数:d0, d, ..., dn : int,可选。如果没有参数,则返回一个服从标准正态分布的float型随机数。

返回值:ndarray对象或者float

例子

# 3行2列
a = np.random.randn(3, 2)
print(a)
# 不提供形状
b = np.random.randn()
print(b)

输出:

[[-1.46605527  0.35434705]
[ 0.43408199 0.02689309]
[ 0.48041554 1.62665755]]
-0.6291254375915813

4、numpy.random.normal(loc=0.0, scale=1.0, size=None)

作用:返回一个由size指定形状的数组,数组中的值服从 \(\mu=loc, \sigma=scale\) 的正态分布

参数

loc : float型或者float型的类数组对象,指定均值 \(\mu\)

scale : float型或者float型的类数组对象,指定标准差 \(\sigma\)

size : int型或者int型的元组,指定了数组的形状。如果不提供size,且loc和scale为标量(不是类数组对象),则返回一个服从该分布的随机数。

输出:ndarray对象或者一个标量

例子

# 标准正态分布,3行2列
a = np.random.normal(0, 1, (3, 2))
print(a)
# 均值为1,标准差为3
b = np.random.normal(1, 3)
print(b)

输出:

[[ 0.34912031 -0.08757564]
[-0.99753101 0.37441719]
[ 2.68072286 -1.03663963]]
5.770831320998463

5、numpy.random.randint(low, high=None, size=None, dtype='l')

作用:返回一个在区间[low, high)中离散均匀抽样的数组,size指定形状,dtype指定数据类型。

参数

low, high:int型,指定抽样区间[low, high)

size:int型或int型的元组,指定形状

dypte:可选参数,指定数据类型,比如int,int64等,默认是np.int

返回值:如果指定了size,则返回一个int型的ndarray对象,否则返回一个服从该分布的int型随机数。

例子

# 在[1, 10)之间离散均匀抽样,数组形状为3行2列
a = np.random.randint(1, 10, (3, 2))
print(a)
# 不提供size
b = np.random.randint(1, 10)
print(b)
# 指定dtype
c = np.random.randint(1, 10, dtype=np.int64)
print(c)
type(c)

输出:

[[3 1]
[3 3]
[5 8]]
6
2
numpy.int64

6、numpy.random.random(size=None)

作用:返回从[0, 1)之间均匀抽样的数组,size指定形状。

参数

size:int型或int型的元组,如果不提供则返回一个服从该分布的随机数

返回值:float型或者float型的ndarray对象

例子

# [0, 1)之间的均匀抽样,3行2列
a = np.random.random((3, 2))
print(a)
# 不指定size
b = np.random.random()
print(b)

输出:

[[0.80136714 0.63129059]
[0.04556679 0.04433006]
[0.09643599 0.53312761]]
0.32828505898057136

使用numpy产生随机数的更多方法可以参考官方文档

使用numpy产生随机数的更多相关文章

  1. numpy生成随机数

    如果你想说,我不想知道里面的逻辑和实现方法,只想要python生成随机数的代码,请移步本文末尾,最简单的demo帮你快速获取实现方法. 先开始背景故事说明: 在数据分析中,数据的获取是第一步,nump ...

  2. 基于numpy的随机数构造

    class numpy.random.RandomState(seed=None) RandomState 是一个基于Mersenne Twister算法的伪随机数生成类 RandomState 包含 ...

  3. 转 载python数据分析(1)-numpy产生随机数

    转自:http://blog.csdn.net/jinxiaonian11/article/details/53143141 在数据分析中,数据的获取是第一步,numpy.random 模块提供了非常 ...

  4. NumPy基础操作(3)——代数运算和随机数

    NumPy基础操作(3)--代数运算和随机数 (注:记得在文件开头导入import numpy as np) 目录: NumPy在矩阵运算中的应用 常用矩阵运算函数介绍 编程实现 利用NumPy生成随 ...

  5. 【转载】python 模块 - random生成随机数模块

    随机数种子 要每次产生随机数相同就要设置种子,相同种子数的Random对象,相同次数生成的随机数字是完全相同的: random.seed(1) 这样random.randint(0,6, (4,5)) ...

  6. python之numpy库[2]

    python-numpy csv文件的写入和存取 写入csv文件 CSV (Comma‐Separated Value, 逗号分隔值),是一种常见的文件格式,用来存储批量数据. 写入csv文件 np. ...

  7. [python]-数据科学库Numpy学习

    一.Numpy简介: Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针.这样为了保存一个简单的[1,2,3],需要有3 ...

  8. 数据分析与展示——NumPy数据存取与函数

    NumPy库入门 NumPy数据存取和函数 数据的CSV文件存取 CSV文件 CSV(Comma-Separated Value,逗号分隔值)是一种常见的文件格式,用来存储批量数据. np.savet ...

  9. 第一周——数据分析之表示 —— Numpy 数据存取与函数

    数据的CSV文件的存取 CSV文件:CSV (Comma‐Separated Value, 逗号分隔值) CSV是一种常见的文件格式,用来存储批量数据 np.savetxt(frame, array, ...

随机推荐

  1. Ubuntu 18.04换国内源 中科大源 阿里源 163源 清华源

    感觉还是18.4好用,所以最近装回了18,感觉现在18的兼容性也还可以了,深度学习的环境配置都没有问题,就是安装软件的时候有点慢,所以想要更新一下源. 第一步: 编辑/etc/apt/sources. ...

  2. uboot 如何向内核传递参数

    a.uboot 向内核传递的参数有两种类型 1.一个是bootargs 2.一个是环境参数, 而环境参数的设置靠的是 Y:\junda\JdLinuxApp\A1801_uboot\source\u- ...

  3. 运维数据库平台~inception测试脚本

    一 简介:今天咱们来聊聊inception的测试脚本 二 范例: #!/usr/bin/python import MySQLdb sql='/*--user=;--password=;--host= ...

  4. python - str和repr方法:

    # python 内置__str__()和__repr__()方法: #显示自定制 # 示例1 # a = 123 # print(a.__str__()) # 示例2 class Test(): d ...

  5. android logger 日志工具

    https://github.com/orhanobut/logger 基础使用:https://blog.csdn.net/github_33304260/article/details/54799 ...

  6. 腾讯云启动数据库进程,提示No such host is known

    回想一下,系统是否切换过外网IP,切换过则检查/etc/hosts文件中IP和主机名对应关系 现象:出错前一直做域名解析

  7. windows下解压zip包,包含中文解析

    #coding=utf8 import os import zipfile import sys,locale # 本来以为需要,结果不需要 # def p(f): # #print '%s.%s() ...

  8. 基于内容的图片检索CBIR简介

    原文地址:http://blog.csdn.net/davebobo/article/details/53171311 传统的图像检索过程,先通过人工对图像进行文字标注,再利用关键字来检索图像,这种依 ...

  9. 路由器中继(repeater)模式 和 AP+WDS模式区别?

    理论上的 中继(repeater)模式, 只有连接的最后一个才会有信号发出,中间的连接节点是没有信号发出的. AP+WDS模式:就是每一个路由都有信号发出,可以进行信号的全方位覆盖.

  10. haproxy配置基于ssl证书的https负载均衡

    本实验全部在haproxy1.5.19版本进行测试通过,经过测试1.7.X及haproxy1.3版本以下haproxy配置参数可能不适用,需要注意版本号. 一.业务要求现在根据业务的实际需要,有以下几 ...