numpy中的random模块包含了很多方法可以用来产生随机数,这篇文章将对random中的一些常用方法做一个总结。

1、numpy.random.rand(d0, d1, ..., dn)

作用:产生一个给定形状的数组(其实应该是ndarray对象或者是一个单值),数组中的值服从[0, 1)之间的均匀分布

参数:d0, d, ..., dn : int,可选。如果没有参数则返回一个float型的随机数,该随机数服从[0, 1)之间的均匀分布。

返回值:ndarray对象或者一个float型的值

例子

# [0, 1)之间均匀分布的随机数,3行2列
a = np.random.rand(3, 2)
print(a)
# 不提供形状
b = np.random.rand()
print(b)

输出:

[[0.26054323 0.28184468]
[0.7783674 0.71733674]
[0.90302256 0.49303252]]
0.6022098740124009

2、numpy.random.uniform(low=0.0, high=1.0, size=None)

作用:返回一个在区间[low, high)中均匀分布的数组,size指定形状。

参数

low, high:float型或者float型的类数组对象。指定抽样区间为[low, high),low的默认值为0.0,hign的默认值为1.0

size:int型或int型元组。指定形状,如果不提供size,则返回一个服从该分布的随机数。

例子

# 在[1, 10)之间均匀抽样,数组形状为3行2列
a = np.random.uniform(1, 10, (3, 2))
print(a)
# 不提供size
b = np.random.uniform(1, 10)
print(b)

输出:

[[5.16545387 6.3769087 ]
[9.98964899 7.88833885]
[1.37173855 4.19855075]]
3.899250175275188

3、numpy.random.randn(d0, d1, ..., dn)

作用:返回一个指定形状的数组,数组中的值服从标准正态分布(均值为0,方差为1)。

参数:d0, d, ..., dn : int,可选。如果没有参数,则返回一个服从标准正态分布的float型随机数。

返回值:ndarray对象或者float

例子

# 3行2列
a = np.random.randn(3, 2)
print(a)
# 不提供形状
b = np.random.randn()
print(b)

输出:

[[-1.46605527  0.35434705]
[ 0.43408199 0.02689309]
[ 0.48041554 1.62665755]]
-0.6291254375915813

4、numpy.random.normal(loc=0.0, scale=1.0, size=None)

作用:返回一个由size指定形状的数组,数组中的值服从 \(\mu=loc, \sigma=scale\) 的正态分布

参数

loc : float型或者float型的类数组对象,指定均值 \(\mu\)

scale : float型或者float型的类数组对象,指定标准差 \(\sigma\)

size : int型或者int型的元组,指定了数组的形状。如果不提供size,且loc和scale为标量(不是类数组对象),则返回一个服从该分布的随机数。

输出:ndarray对象或者一个标量

例子

# 标准正态分布,3行2列
a = np.random.normal(0, 1, (3, 2))
print(a)
# 均值为1,标准差为3
b = np.random.normal(1, 3)
print(b)

输出:

[[ 0.34912031 -0.08757564]
[-0.99753101 0.37441719]
[ 2.68072286 -1.03663963]]
5.770831320998463

5、numpy.random.randint(low, high=None, size=None, dtype='l')

作用:返回一个在区间[low, high)中离散均匀抽样的数组,size指定形状,dtype指定数据类型。

参数

low, high:int型,指定抽样区间[low, high)

size:int型或int型的元组,指定形状

dypte:可选参数,指定数据类型,比如int,int64等,默认是np.int

返回值:如果指定了size,则返回一个int型的ndarray对象,否则返回一个服从该分布的int型随机数。

例子

# 在[1, 10)之间离散均匀抽样,数组形状为3行2列
a = np.random.randint(1, 10, (3, 2))
print(a)
# 不提供size
b = np.random.randint(1, 10)
print(b)
# 指定dtype
c = np.random.randint(1, 10, dtype=np.int64)
print(c)
type(c)

输出:

[[3 1]
[3 3]
[5 8]]
6
2
numpy.int64

6、numpy.random.random(size=None)

作用:返回从[0, 1)之间均匀抽样的数组,size指定形状。

参数

size:int型或int型的元组,如果不提供则返回一个服从该分布的随机数

返回值:float型或者float型的ndarray对象

例子

# [0, 1)之间的均匀抽样,3行2列
a = np.random.random((3, 2))
print(a)
# 不指定size
b = np.random.random()
print(b)

输出:

[[0.80136714 0.63129059]
[0.04556679 0.04433006]
[0.09643599 0.53312761]]
0.32828505898057136

使用numpy产生随机数的更多方法可以参考官方文档

使用numpy产生随机数的更多相关文章

  1. numpy生成随机数

    如果你想说,我不想知道里面的逻辑和实现方法,只想要python生成随机数的代码,请移步本文末尾,最简单的demo帮你快速获取实现方法. 先开始背景故事说明: 在数据分析中,数据的获取是第一步,nump ...

  2. 基于numpy的随机数构造

    class numpy.random.RandomState(seed=None) RandomState 是一个基于Mersenne Twister算法的伪随机数生成类 RandomState 包含 ...

  3. 转 载python数据分析(1)-numpy产生随机数

    转自:http://blog.csdn.net/jinxiaonian11/article/details/53143141 在数据分析中,数据的获取是第一步,numpy.random 模块提供了非常 ...

  4. NumPy基础操作(3)——代数运算和随机数

    NumPy基础操作(3)--代数运算和随机数 (注:记得在文件开头导入import numpy as np) 目录: NumPy在矩阵运算中的应用 常用矩阵运算函数介绍 编程实现 利用NumPy生成随 ...

  5. 【转载】python 模块 - random生成随机数模块

    随机数种子 要每次产生随机数相同就要设置种子,相同种子数的Random对象,相同次数生成的随机数字是完全相同的: random.seed(1) 这样random.randint(0,6, (4,5)) ...

  6. python之numpy库[2]

    python-numpy csv文件的写入和存取 写入csv文件 CSV (Comma‐Separated Value, 逗号分隔值),是一种常见的文件格式,用来存储批量数据. 写入csv文件 np. ...

  7. [python]-数据科学库Numpy学习

    一.Numpy简介: Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指针.这样为了保存一个简单的[1,2,3],需要有3 ...

  8. 数据分析与展示——NumPy数据存取与函数

    NumPy库入门 NumPy数据存取和函数 数据的CSV文件存取 CSV文件 CSV(Comma-Separated Value,逗号分隔值)是一种常见的文件格式,用来存储批量数据. np.savet ...

  9. 第一周——数据分析之表示 —— Numpy 数据存取与函数

    数据的CSV文件的存取 CSV文件:CSV (Comma‐Separated Value, 逗号分隔值) CSV是一种常见的文件格式,用来存储批量数据 np.savetxt(frame, array, ...

随机推荐

  1. c#中如何在一个panel中放入窗体

    Form2 f2 = new Form2(); //实例化窗体FORM2 f2.TopLevel = false; //设置为非顶级窗体 f2.FormBorderStyle = FormBorder ...

  2. windows钩子函数

    一 什么时候用到钩子?(when)Windows操作系统是建立在事件驱动的消息处理机制之上,系统各部分之间的沟通也都是通过消息的相互传递而实现的.通常情况下,应用程序只能处理当前进程的消息,如果需要对 ...

  3. np.savetxt()——将array保存到txt文件,并保持原格式

    问题:1.如何将array保存到txt文件中?2.如何将存到txt文件中的数据读出为ndarray类型? 需求:科学计算中,往往需要将运算结果(array类型)保存到本地,以便进行后续的数据分析. 解 ...

  4. [转]数据对齐对CPU的影响

    [转]http://www.cnblogs.com/wuzhenbo/archive/2012/06/05/2537465.html 1.前言 在IBM开发社区上发现一篇叫'Data alignmen ...

  5. Linux之定时器与时间管理 【转】

    转自:http://blog.chinaunix.net/uid-23228758-id-154820.html 定时器与时间管理: 次,为一秒.一般的情况下编程者不要改变这个值,因为内核编很多代码都 ...

  6. python位运算之计算中位数

    # -*- coding: utf-8 -*- # @Time : 2018/11/23 10:49 PM # @Author : cxa # @File : 1.py # @Software: Py ...

  7. git免密配置

    1.在git安装目录下双击bash.exeC:\DevTools\Git\bin 2.在弹出窗口内输入,回车,回车ssh-keygen -t rsa -C "542113457@qq.com ...

  8. 026_关于shell中的特殊变量$0 $n $* $@ $! $?

    一. $n:获取当前执行的shell脚本的第N个参数,n=1..9,当n为0时表示脚本的文件名,如果n大于9,用大括号括起来like${10}. $*:获取当前shell的所有参数,将所有的命令行参数 ...

  9. 转载:2.2.3 配置项的注释《深入理解Nginx》(陶辉)

    原文:https://book.2cto.com/201304/19628.html 如果有一个配置项暂时需要注释掉,那么可以加"#"注释掉这一行配置.例如: #pid       ...

  10. Android:注册登录

    注册登录的实现 先在layout里新建一个xml文件: //login.xml <?xml version="1.0" encoding="utf-8"? ...