(4运行例子)自己动手,编写神经网络程序,解决Mnist问题,并网络化部署
1、联通ColaB


# https://pypi.python.org/pypi/pydot
#!apt-get -qq install -y graphviz && pip install -q pydot
#import pydot
from __future__ import print_function
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
from keras.utils import plot_model
import matplotlib.pyplot as plt
batch_size = 128
num_classes = 10
epochs = 12
#epochs = 2
# input image dimensions
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
#log = model.fit(X_train, Y_train,
# batch_size=batch_size, nb_epoch=num_epochs,
# verbose=1, validation_split=0.1)
log = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
plt.figure('acc')
plt.subplot(2, 1, 1)
plt.plot(log.history['acc'],'r--',label='Training Accuracy')
plt.plot(log.history['val_acc'],'r-',label='Validation Accuracy')
plt.legend(loc='best')
plt.xlabel('Epochs')
plt.axis([0, epochs, 0.9, 1])
plt.figure('loss')
plt.subplot(2, 1, 2)
plt.plot(log.history['loss'],'b--',label='Training Loss')
plt.plot(log.history['val_loss'],'b-',label='Validation Loss')
plt.legend(loc='best')
plt.xlabel('Epochs')
plt.axis([0, epochs, 0, 1])
plt.show()

# https://pypi.python.org/pypi/pydot
#!apt-get -qq install -y graphviz && pip install -q pydot
#import pydot
from __future__ import print_function
import keras
from keras.datasets import fashion_mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
from keras.utils import plot_model
import matplotlib.pyplot as plt
batch_size = 128
num_classes = 10
epochs = 12
#epochs = 2
# input image dimensions
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
#log = model.fit(X_train, Y_train,
# batch_size=batch_size, nb_epoch=num_epochs,
# verbose=1, validation_split=0.1)
log = model.fit(x_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
plt.figure('acc')
plt.subplot(2, 1, 1)
plt.plot(log.history['acc'],'r--',label='Training Accuracy')
plt.plot(log.history['val_acc'],'r-',label='Validation Accuracy')
plt.legend(loc='best')
plt.xlabel('Epochs')
plt.axis([0, epochs, 0.9, 1])
plt.figure('loss')
plt.subplot(2, 1, 2)
plt.plot(log.history['loss'],'b--',label='Training Loss')
plt.plot(log.history['val_loss'],'b-',label='Validation Loss')
plt.legend(loc='best')
plt.xlabel('Epochs')
plt.axis([0, epochs, 0, 1])
plt.show()

(4运行例子)自己动手,编写神经网络程序,解决Mnist问题,并网络化部署的更多相关文章
- (2编写网络)自己动手,编写神经网络程序,解决Mnist问题,并网络化部署
基于<神经网络和深度学习>这本绝好的教材提供的相关资料和代码,我们自己动手编写"随机取样的梯度下降神经网络".为了更好地说明问题,我们先从简单的开始: 1.sigmod ...
- (12网络化部署深化下)自己动手,编写神经网络程序,解决Mnist问题,并网络化部署
网络化部署一直是我非常想做的,现在已经基本看到了门路.今天早上实验,发现在手机上的支持也非常好(对于相机的支持还差一点),证明B/S结构的框架是非常有生命力的.下一步就是要将这个过程深化.总结,并且封 ...
- (13flask继续研究)自己动手,编写神经网络程序,解决Mnist问题,并网络化部署
解决3个问题: 1.自己实现一例flask项目: 2.在flask中,如何调用json传值: 3.进一步读懂现有代码. Flask 在整个系统中是作为一个后台框架,对外提供 api 服务,因此对它的理 ...
- (5keras自带的模型之间的关系)自己动手,编写神经网络程序,解决Mnist问题,并网络化部署
其中: 1.VGG 网络以及从 2012 年以来的 AlexNet 都遵循现在的基本卷积网络的原型布局:一系列卷积层.最大池化层和激活层,最后还有一些全连接的分类层. 2.ResNet 的作者将 ...
- (3网络化部署)自己动手,编写神经网络程序,解决Mnist问题,并网络化部署
我们使用google提供的colab,对我们现有的GoNetwork进行适当修改,利用网络资源进行运算. 一.什么是 Colaboratory? Colaboratory 是一款研究工具,用于进行机器 ...
- (6CBIR模拟问题)自己动手,编写神经网络程序,解决Mnist问题,并网络化部署
个方面: 最初的图像检索研究主要集中在如何选择合适的全局特征去描述图像内容和采用什么样的相似性度量方法进行图像匹配. 第二个研究热点是基于区域的图像检索方法,其主要思想是图像分割技术提取出图像中的物体 ...
- 关于《Spark快速大数据分析》运行例子遇到的报错及解决
一.描述 在书中第二章,有一个例子,构建完之后,运行: ${SPARK_HOME}/bin/spark-submit --class com.oreilly.learningsparkexamples ...
- 编写一个程序解决选择问题。令k=N/2。
import java.util.Arrays; /** * 选择问题,确定N个数中第K个最大值 * @author wulei * 将前k个数读进一个数组,冒泡排序(递减),再将剩下的元素逐个读入, ...
- 用python + hadoop streaming 编写分布式程序(二) -- 在集群上运行与监控
写在前面 相关随笔: Hadoop-1.0.4集群搭建笔记 用python + hadoop streaming 编写分布式程序(一) -- 原理介绍,样例程序与本地调试 用python + hado ...
随机推荐
- jmeter BeanShell断言(一)
原文地址https://blog.csdn.net/lijing742180/article/details/81157947 原文地址https://blog.csdn.net/zailushang ...
- 响应式布局css样式
核心css /*图片列表样式*/ .img-list{ margin:-15px 0 0 -15px; *display:inline-block; } /*响应式布局*/ @media screen ...
- UVA 10256 The Great Divide(点在多边形内)
The Great Divid [题目链接]The Great Divid [题目类型]点在多边形内 &题解: 蓝书274, 感觉我的代码和刘汝佳的没啥区别,可是我的就是wa,所以贴一发刘汝佳 ...
- Boot-col-sm布局
<!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...
- Web Audio初步介绍和实践
Web Audio还是一个比较新的JavaScript API,它和HTML5中的<audio>是不同的,简单来说,<audio>标签是为了能在网页中嵌入音频文件,和播放器一样 ...
- object base基类分析
uvm_object,是所有uvm data和hierarchical class的基类,实现了copy,compare,print,record之类的函数 扩展类中必须实现create和get_ty ...
- python 爬起点目录
#目标:书名,简介,作者,字数 #首先确定源代码的列表 import urllib.request import re from bs4 import BeautifulSoup import ran ...
- canvas添加水印
<canvas id="canvas"></canvas><canvas id="water"></canvas> ...
- django的母板和继承
Django模板中只需要记两种特殊符号: {{ }}和 {% %} {{ }}表示变量,在模板渲染的时候替换成值,{% %}表示逻辑相关的操作. 母板 <!DOCTYPE html> & ...
- 仿照admin实现一个自定义的增删改查的组件
1.首先,创建三个项目,app01,app02,stark,在settings里边记得配置.然后举例:在app01的model里边写表,用的db.sqlite3,所以数据库不用再settings里边配 ...