CF1878 A-G 题解
前言
赛时代码可能比较难看。
为什么 Div3 会出 4 道数据结构。
A
判定 \(a\) 中是否有 \(k\) 即可。
B
奇怪的构造题。
令 \(a_1=1,a_2=3\),其他项由上一项加一开始枚举判定可行性即可,可以简单证明时间复杂度为 \(O(n)\)。
C
容易发现当 \(x\in \left[\dfrac{k(k+1)}{2},\dfrac{k(2n-k+1)}{2}\right]\) 时均可以凑出,因为可行性是连续的,证明显然。
D
额,其实这题什么性质都不用管,直接用平衡树维护翻转操作,剩下的就是模拟。
这里使用了 FHQTreap,时间复杂度为 \(O(n\log n)\),常数稍大,但可以通过。
E
容易发现区间与具有可合并性和单调性(固定左端点,显然区间与随右端点增大单调不升),所以可以直接用 ST 表维护区间与,对每个询问二分右端点即可。
注意二分时要二分最右端点!赛时 WA 了两发。时间复杂度为 \(O(n\log n)\)。
F
我们知道 \(d\) 是一个积性函数,当 \(\gcd(a,n)=1\) 时,有 \(d(n\cdot a) = d(n)\cdot d(a)\),我们容易发现 \(d(a)\) 可以取到任意正整数(\(a\) 取 \(1\) 时为 \(1\),\(a\) 取大质数 \(p\) 时为 \(2\),取 \(p^k\) 时为 \(k\)),因此判定等价于判断 \(n\) 能否被 \(d(n)\) 整除。
设 \(n\) 的唯一分解为 \(\prod p_i^{k_i}\),我们知道 \(d(n)=\prod(k_i+1)\),那么我们就直接用 map 维护 \(n\) 的唯一分解就做完了。
具体的说,当 \(n\gets n\cdot x\) 时,容易发现相当于将 \(n\),\(x\) 的唯一分解的指数相加。而要判断 \(n\) 能否被 \(d(n)\) 整除,我们只需要判断 \(d(n)\) 的唯一分解的每一项的指数是否都小于等于 \(n\) 对应的指数即可。
时间复杂度是 \(O(q(\sqrt V+\log^2 V))\),其中 \(V=10^9\)。
G
赛后花了 40 分钟写完加调完的,是一个比正解劣的做法,还难写。
逐位考虑,考虑某一位时 \(x,y\) 的链是一条 \(01\) 链,我们找到从 \(x\) 到 \(y\) 路径上的第一个 \(1\) 的位置 \(u\),将 \(u\) 到 \(y\) 的路径加 \(1\),再找到从 \(y\) 到 \(x\) 路径上的第一个 \(1\) 的位置 \(v\),将 \(v\) 到 \(x\) 的路径加 \(1\),最后查询全局最大值即可。
链加和查询最大值可以用树剖套线段树维护,找到第一个 \(1\) 的位置可以用树剖套二分加分讨做,需要预处理一个按位的前缀数组。时间复杂度为 \(O(q\log^2n\log V)\),空间复杂度为 \(O(n\log V)\)。实现精细可以通过(比如写一个 \(O(1)\) 清空线段树),不卡常跑了 4500ms。
这个做法有很高的可扩展性,比如可以做到求最大的 \(z\) 的数量。
CF1878 A-G 题解的更多相关文章
- 洛谷P3104 Counting Friends G 题解
题目 [USACO14MAR]Counting Friends G 题解 这道题我们可以将 \((n+1)\) 个边依次去掉,然后分别判断去掉后是否能满足.注意到一点, \(n\) 个奶牛的朋友之和必 ...
- 洛谷P2115 Sabotage G 题解
题目 [USACO14MAR]Sabotage G 题解 本蒟蒻又来了,这道题可以用二分答案来解决.我们可以设答案最小平均产奶量为 \(x \ (x \in[1,10000])\) .然后二分搜索 \ ...
- P2882 Face The Right Way G 题解
题目 Farmer John has arranged his N \((1 ≤ N ≤ 5,000)\) cows in a row and many of them are facing forw ...
- Hdoj 2454.Degree Sequence of Graph G 题解
Problem Description Wang Haiyang is a strong and optimistic Chinese youngster. Although born and bro ...
- P2341 [USACO03FALL][HAOI2006]受欢迎的牛 G 题解
原题链接 POJ的链接 简要题意: 给定一张图,求多少个点,每个点都能到达它. 本题作为强连通分量的入门题. 何为强连通分量?有什么用? 下面一一解释. 首先,我们要确认,这道题目如果不用强连通分量而 ...
- USACO07NOV Cow Relays G 题解
题目 For their physical fitness program, \(N (2 ≤ N ≤ 1,000,000)\) cows have decided to run a relay ra ...
- Codeforces Round #677 (Div. 3) E、G题解
E. Two Round Dances #圆排列 题目链接 题意 \(n\)(保证偶数)个人,要表演一个节目,这个节目包含两种圆形舞蹈,而每种圆形舞蹈恰好需要\(n/2\)个人,每个人只能跳一种圆形舞 ...
- 2018年第九届蓝桥杯【C++省赛B组】B、C、D、F、G 题解
B. 明码 #STL 题意 把每个字节转为2进制表示,1表示墨迹,0表示底色.每行2个字节,一共16行,布局是: 第1字节,第2字节 第3字节,第4字节 .... 第31字节, 第32字节 给定一段由 ...
- [NOI2009] 诗人小G [题解]
诗人小G 题目大意 给出 \(n\) 个长度不超过 \(30\) 的句子,要求你对其进行排版. 对于每一行,有一个规定的行标准长度 \(L\) ,每一行的不协调度等于该行的实际长度与行标准长度差的绝对 ...
- FJUT寒假作业第二周G题解快速幂
题目来源:http://210.34.193.66:8080/vj/Contest.jsp?cid=161#P6 题意:求n个数字的乘积对c取摸.主要就是有快速幂扩展到广义幂的过程. 首先题目 ...
随机推荐
- SpringBoot 拦截器 & 过滤器
拦截器 Java里的拦截器是动态拦截Action调用的对象,它提供了一种机制可以使开发者在一个Action执行的前后执行一段代码,也可以在一个Action执行前阻止其执行,同时也提供了一种可以提取Ac ...
- 详解共识算法的Raft算法模拟数
摘要:Raft算法是一种分布式共识算法,用于解决分布式系统中的一致性问题. 本文分享自华为云社区<共识算法之Raft算法模拟数>,作者: TiAmoZhang . 01.Leader选举 ...
- DHorse v1.2.1 发布,基于k8s的发布平台
综述 DHorse是一个简单易用.以应用为中心的云原生DevOps系统,具有持续集成.持续部署.微服务治理等功能,无需安装依赖Docker.Maven.Node等环境即可发布Java.Vue.Reac ...
- 实际上手体验maven面对冲突Jar包的加载规则
一.问题背景 相信大家在日常的开发过程中都遇到过Jar包冲突的问题,emm,在最近处理业务需求时我也遇到了不同版本jar包冲突导致项目加载出错的问题.主要是一个完整的项目会不可避免的使用第三方的Jar ...
- 痞子衡嵌入式:恩智浦i.MX RT1xxx系列MCU启动那些事(10)- 从Serial NAND启动
大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是恩智浦i.MXRT1xxx系列MCU的Serial NAND启动. 最近越来越多的客户在咨询 i.MXRT1xxx 从 Serial N ...
- Django基本数据库操作
Django基本数据库操作 @ 目录 Django基本数据库操作 内容一:基本数据库配置 内容二:ORM基本操作 内容一:基本数据库配置 Django是一个流行的Python Web框架,它可以 ...
- IDEA:使用Test注解,控制台无法输入
解决方案 步骤一: 点击help ===> Edit Custom VM Options... 步骤二: 添加文件末尾添加如下内容 -Deditable.java.test.console=tr ...
- zanePerfor中一套简单通用的Node前后端Token登录机制和github授权登录方式
HI!,你好,我是zane,zanePerfor是一款我开发的一个前端性能监控平台,现在支持web浏览器端和微信小程序端. 我定义为一款完整,高性能,高可用的前端性能监控系统,这是未来会达到的目的,现 ...
- 跟运维学 Linux - 03
权限机制和性能指标 前面我们学完了操作文件和用户相关知识,本篇学习权限和性能相关知识. 文件的属性看起 看 linux 的权限,先从文件的属性看起 ls -l 加 -d 是只看这个文件夹: pjl@p ...
- 你知道ES6中的这些属性吗
ES6,也称ESMAScript2015,这个版本增加了很多好用的特性 变量声明 ES6之前用var来定义变量,ES6增加了两个变量声明的方式,分别为const和let,const用来定义常量,let ...