题目链接

题目

题目描述

Farmer John has N barren pastures (2 <= N <= 100,000) connected by N-1 bidirectional roads, such that there is exactly one path between any two pastures. Bessie, a cow who loves her grazing time, often complains about how there is no grass on the roads between pastures. Farmer John loves Bessie very much, and today he is finally going to plant grass on the roads. He will do so using a procedure consisting of M steps (1 <= M <= 100,000).

At each step one of two things will happen:

- FJ will choose two pastures, and plant a patch of grass along each road in between the two pastures, or,

- Bessie will ask about how many patches of grass on a particular road, and Farmer John must answer her question.

Farmer John is a very poor counter -- help him answer Bessie's questions!

输入描述

  • Line 1: Two space-separated integers N and M
  • Lines 2..N: Two space-separated integers describing the endpoints of a road.
  • Lines N+1..N+M: Line i+1 describes step i. The first character of the line is either P or Q, which describes whether or not FJ is planting grass or simply querying. This is followed by two space-separated integers Ai and Bi (1 <= Ai, Bi <= N) which describe FJ's action or query.

输出描述

  • Lines 1..???: Each line has the answer to a query, appearing in the

    same order as the queries appear in the input.

示例1

输入

4 6
1 4
2 4
3 4
P 2 3
P 1 3
Q 3 4
P 1 4
Q 2 4
Q 1 4

输出

2
1
2

题解

知识点:树链剖分,线段树。

通常树链剖分维护的是点权,但这里需要维护边权,因此我们考虑将边权映射到点权上,考虑用边的下端点代替一条边(上端点会导致非一对一映射)。

需要注意,更新操作时,对最后一段 \((u,v)\) 更新时,\(u\) 对应的那条边是不需要的,所以更新 \([L[u]+1,L[v]]\) 的点权。

时间复杂度 \(O((n+m)\log n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
using namespace std;
using ll = long long; struct HLD {
vector<int> siz, dep, fat, son, top, dfn, L, R; HLD() {}
HLD(int rt, const vector<vector<int>> &g) { init(rt, g); } void init(int rt, const vector<vector<int>> &g) {
assert(g.size() >= rt + 1);
int n = g.size() - 1;
siz.assign(n + 1, 0);
dep.assign(n + 1, 0);
fat.assign(n + 1, 0);
son.assign(n + 1, 0);
top.assign(n + 1, 0);
dfn.assign(n + 1, 0);
L.assign(n + 1, 0);
R.assign(n + 1, 0); function<void(int, int)> dfsA = [&](int u, int fa) {
siz[u] = 1;
dep[u] = dep[fa] + 1;
fat[u] = fa;
for (auto v : g[u]) {
if (v == fa) continue;
dfsA(v, u);
siz[u] += siz[v];
if (siz[v] > siz[son[u]]) son[u] = v;
}
};
dfsA(rt, 0); int dfncnt = 0;
function<void(int, int)> dfsB = [&](int u, int tp) {
top[u] = tp;
dfn[++dfncnt] = u;
L[u] = dfncnt;
if (son[u]) dfsB(son[u], tp);
for (auto v : g[u]) {
if (v == fat[u] || v == son[u]) continue;
dfsB(v, v);
}
R[u] = dfncnt;
};
dfsB(rt, rt);
}
}; template <class T>
class Fenwick {
int n;
vector<T> node; public:
Fenwick(int _n = 0) { init(_n); } void init(int _n) {
n = _n;
node.assign(n + 1, T());
} void update(int x, T val) { for (int i = x;i <= n;i += i & -i) node[i] += val; } T query(int x) {
T ans = T();
for (int i = x;i >= 1;i -= i & -i) ans += node[i];
return ans;
}
}; struct T {
int sum = 0;
T &operator+=(const T &x) { return sum += x.sum, *this; }
}; const int N = 1e5 + 7;
vector<int> g[N];
HLD hld;
Fenwick<T> fw; void path_update(int u, int v) {
auto &top = hld.top;
auto &dep = hld.dep;
auto &fat = hld.fat;
auto &L = hld.L;
while (top[u] != top[v]) {
if (dep[top[u]] < dep[top[v]]) swap(u, v);
fw.update(L[top[u]], { 1 });
fw.update(L[u] + 1, { -1 });
u = fat[top[u]];
}
if (dep[u] > dep[v]) swap(u, v);
fw.update(L[u] + 1, { 1 });
fw.update(L[v] + 1, { -1 });
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n, m;
cin >> n >> m;
for (int i = 1;i <= n - 1;i++) {
int u, v;
cin >> u >> v;
g[u].push_back(v);
g[v].push_back(u);
}
hld.init(1, vector<vector<int>>(g, g + n + 1)); fw.init(n); while (m--) {
char op;
cin >> op;
if (op == 'P') {
int u, v;
cin >> u >> v;
path_update(u, v);
}
else {
int u, v;
cin >> u >> v;
if (hld.dep[u] < hld.dep[v]) swap(u, v);
cout << fw.query(hld.L[u]).sum << '\n';
}
}
return 0;
}

NC24141 [USACO 2011 Dec G]Grass Planting的更多相关文章

  1. [USACO 2011 Dec Gold] Threatening Letter【后缀】

    Problem 3: Threatening Letter [J. Kuipers, 2002] FJ has had a terrible fight with his neighbor and w ...

  2. [USACO 2011 Dec Gold] Cow Calisthenics【二分】

    Problem 1: Cow Calisthenics [Michael Cohen, 2010] Farmer John continues his never-ending quest to ke ...

  3. USACO Grass Planting

    洛谷 P3038 [USACO11DEC]牧草种植Grass Planting 洛谷传送门 JDOJ 2282: USACO 2011 Dec Gold 3.Grass Planting JDOJ传送 ...

  4. USACO翻译:USACO 2013 DEC Silver三题

    USACO 2013 DEC SILVER 一.题目概览 中文题目名称 挤奶调度 农场航线 贝西洗牌 英文题目名称 msched vacation shuffle 可执行文件名 msched vaca ...

  5. USACO翻译:USACO 2014 DEC Silver三题

    USACO 2014 DEC SILVER 一.题目概览 中文题目名称 回程 马拉松 奶牛慢跑 英文题目名称 piggyback marathon cowjog 可执行文件名 piggyback ma ...

  6. [USACO 2017 Dec Gold] Tutorial

    Link: USACO 2017 Dec Gold 传送门 A: 为了保证复杂度明显是从终结点往回退 结果一开始全在想优化建边$dfs$……其实可以不用建边直接$multiset$找可行边跑$bfs$ ...

  7. spoj - Grass Planting(树链剖分模板题)

    Grass Planting 题意 给出一棵树,树有边权.每次给出节点 (u, v) ,有两种操作:1. 把 u 到 v 路径上所有边的权值加 1.2. 查询 u 到 v 的权值之和. 分析 如果这些 ...

  8. NC24083 [USACO 2017 Dec P]Greedy Gift Takers

    NC24083 [USACO 2017 Dec P]Greedy Gift Takers 题目 题目描述 Farmer John's nemesis, Farmer Nhoj, has N cows ...

  9. NC24866 [USACO 2009 Dec S]Music Notes

    NC24866 [USACO 2009 Dec S]Music Notes 题目 题目描述 FJ is going to teach his cows how to play a song. The ...

  10. NC25025 [USACO 2007 Nov G]Sunscreen

    NC25025 [USACO 2007 Nov G]Sunscreen 题目 题目描述 To avoid unsightly burns while tanning, each of the \(C\ ...

随机推荐

  1. kafka 在 zookeeper 中保存的数据内容

    转载请注明出处: 1. 服务器上下载 kafka : wget https://archive.apache.org/dist/kafka/2.4.0/kafka_2.12-3.2.0.tgz 2.  ...

  2. linux 查看服务器cpu 与内存配置

    转载请注明出处: 1. 通过 lscpu 命令查看 服务器的cpu 配置 显示格式: Architecture: #架构 CPU(s): #逻辑cpu颗数 Thread(s) per core: #每 ...

  3. 2023第十四届极客大挑战 — CRYPTO(WP全)

    浅谈: 本次大挑战我们队伍也是取得了第一名的成绩,首先要感谢同伴的陪伴和帮助.在共同的努力下终不负期望! 但遗憾的是我们没有在某个方向全通关的,呜呜呜~ 继续努力吧!要学的还很多.明年有机会再战!!加 ...

  4. 查看正在运行容器的环境变量-寻找容器运行mysql的root密码

    查看正在运行容器的环境变量-寻找容器运行mysql的root密码 背景 有一个服务器上面运行着一个长达两年的mysql数据库实例. 因为当时root密码是通过环境变量注入进去的. 现在我想重新连接一下 ...

  5. [转帖]MySQL 官方出品,比 mydumper 更快的多线程逻辑备份工具-MySQL Shell Dump & Load

    MySQL 官方出品,比 mydumper 更快的多线程逻辑备份工具-MySQL Shell Dump & Load - 知乎 (zhihu.com) ​ 目录 收起 什么是 MySQL Sh ...

  6. TiDB恢复部分表的方式方法

    TiDB恢复部分表的方式方法 背景 今天同事告知误删了部分表. 因为是UAT准生产的环境, 所以仅有每天晚上11点的备份处理. 同时告知 昨天的数据也可以. 得到认可后进行了 TiDB的单表备份恢复. ...

  7. [转帖]038-拯救大兵瑞恩之 TiDB 如何在 TiKV 损坏的情况下恢复

    https://tidb.net/blog/4b5451bb?utm_source=tidb-community&utm_medium=referral&utm_campaign=re ...

  8. 【转帖】Linux开发工具 — readelf、objdump、hexdump

    本博文的主要内容是:1)readelf工具查看ELF文件的信息:2)hexdump工具查看这块内存:3)objdump工具对文件进行反汇编. 前一段时间对Linux不熟,所以很多命令不知道.学习C时候 ...

  9. [转帖] Linux命令拾遗-查看系统信息

    https://www.cnblogs.com/codelogs/p/16060714.html 简介# 作为一名程序员,有时需要关注自己的进程运行在什么样的软硬件环境里,比如几核cpu.固态硬盘还是 ...

  10. [转帖]如何在本地编译安装部署自动化回归测试平台 AREX

    https://zhuanlan.zhihu.com/p/613877597 AREX 官方 QQ 交流群:656108079 本文将详细为大家介绍一下自动化回归测试平台 AREX 以及如何在本地进行 ...