【scikit-learn基础】--『监督学习』之 随机森林回归
随机森林回归(Random Forest Regression)是一种在机器学习领域广泛应用的算法,由美国科学家 Leo Breiman 在2001年提出。
它是一种集成学习方法,通过整合多个决策树的预测结果来提高预测精度和稳定性。
随机森林回归适用于各种需要预测连续数值输出的问题,
如金融领域的股票价格预测、客户信用评分,医疗领域的疾病诊断和药物发现等。
1. 算法概述
随机森林回归算法通过引入随机性来构建多个决策树,再通过对这些树的预测结果进行平均或投票来得出最终的预测结果。
这里的随机性主要体现在两个方面:一是训练样本的随机选取,二是在训练过程中特征的随机选取。
随机森林的算法过程并不复杂,主要的步骤如下:
- 从原始训练集中随机选择一部分样本,构成一个新的子样本集。这样可以使得每棵决策树都在不同的样本集上进行训练,增加模型的多样性。
- 对于每个决策树的每个节点,在选择最佳划分特征时,只考虑随机选择的一部分特征。这样可以防止某些特征对整个模型的影响过大,提高模型的鲁棒性。
- 在每个子样本集上使用某种决策树算法构建一棵决策树。决策树的生长过程中,通常采用递归地选择最佳划分特征,将数据集划分为不纯度最小的子集。
- 通过上述步骤生成的大量决策树最终组合成随机森林。
上面第一,第二步骤中的随机性就是随机森林这个名称的由来。
2. 创建样本数据
这次的回归样本数据,我们用 scikit-learn 自带的样本生成器来生成回归样本。
关于样本生成器的内容,可以参考:TODO
from sklearn.datasets import make_regression
# 回归样本生成器
X, y = make_regression(n_features=4, n_informative=2)
每个样本有4个特征。
3. 模型训练
训练之前,为了减少算法误差,先对数据进行标准化处理。
from sklearn import preprocessing as pp
# 数据标准化
X = pp.scale(X)
y = pp.scale(y)
接下来分割训练集和测试集。
from sklearn.model_selection import train_test_split
# 分割训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)
然后用scikit-learn中的RandomForestRegressor模型来训练:
from sklearn.ensemble import RandomForestRegressor
# 定义随机森林回归模型
reg = RandomForestRegressor(max_depth=2)
# 训练模型
reg.fit(X_train, y_train)
# 在测试集上进行预测
y_pred = reg.predict(X_test)
RandomForestRegressor的主要参数包括:
- n_estimators:森林中决策树的数量。默认值为100,表示这是森林中树木的数量,即基评估器的数量。但是,任何模型都有决策边界,当n_estimators达到一定的程度之后,随机森林的精确性往往不再上升或开始波动。同时,n_estimators越大,需要的计算量和内存也越大,训练的时间也会越来越长。
- max_depth:树的最大深度。默认是None,与剪枝相关。设置为None时,树的节点会一直分裂,直到每个叶子都是“纯”的,或者叶子中包含于min_samples_split个样本。可以从3开始尝试增加,观察是否应该继续加大深度。
- min_samples_split:在叶节点处需要的最小样本数。默认值是2,指定每个内部节点(非叶子节点)包含的最少的样本数。
- min_samples_leaf:每个叶子结点包含的最少的样本数。参数的取值除了整数之外,还可以是浮点数。如果参数的值设置过小会导致过拟合,反之就会欠拟合。
- min_weight_fraction_leaf:叶子节点所需要的最小权值。
- max_features:用于限制分枝时考虑的特征个数。超过限制个数的特征都会被舍弃。此参数可以设为整数、浮点数、字符或None,默认为'auto'。
- max_leaf_nodes:最大叶子节点数,整数,默认为None。这个参数通过限制树的最大叶子数量来防止过拟合,如果设置了一个正整数,则会在建立的最大叶节点内的树中选择最优的决策树。
- min_impurity_decrease:如果分裂指标的减少量大于该值,则进行分裂。
- min_impurity_split:决策树生长的最小纯净度。默认是0。
最后验证模型的训练效果:
from sklearn import metrics
# 在测试集上进行预测
y_pred = reg.predict(X_test)
mse, r2, m_error = 0.0, 0.0, 0.0
y_pred = reg.predict(X_test)
mse = metrics.mean_squared_error(y_test, y_pred)
r2 = metrics.r2_score(y_test, y_pred)
m_error = metrics.median_absolute_error(y_test, y_pred)
print("均方误差:{}".format(mse))
print("复相关系数:{}".format(r2))
print("中位数绝对误差:{}".format(m_error))
# 运行结果
均方误差:0.0918182629293023
复相关系数:0.9137032593574914
中位数绝对误差:0.17199566634564867
从预测的误差来看,训练的效果非常好。
有同样的数据试了下上一篇介绍的决策树回归算法,发现还是随机森林回归的效果要好一些。
决策数回归的模型效果:
from sklearn.tree import DecisionTreeRegressor
from sklearn import metrics
# 定义决策树回归模型
reg = DecisionTreeRegressor(max_depth=2)
# 训练模型
reg.fit(X_train, y_train)
# 在测试集上进行预测
y_pred = reg.predict(X_test)
mse, r2, m_error = 0.0, 0.0, 0.0
y_pred = reg.predict(X_test)
mse = metrics.mean_squared_error(y_test, y_pred)
r2 = metrics.r2_score(y_test, y_pred)
m_error = metrics.median_absolute_error(y_test, y_pred)
print("均方误差:{}".format(mse))
print("复相关系数:{}".format(r2))
print("中位数绝对误差:{}".format(m_error))
# 运行结果
均方误差:0.1681399575883647
复相关系数:0.8419711956126009
中位数绝对误差:0.36483491370039456
从运行结果来看,决策树回归的误差比随机森林回归要大不少。
4. 总结
随机森林回归算法的优势主要在于可以有效地处理大量的输入变量,并且可以处理非线性关系和交互作用,
同时 ,由于它是集成学习方法,所以可以有效地减少过拟合和欠拟合的问题,提高预测的准确性。
此外,在训练过程中,它可以自动进行特征选择和降维,帮助找到最重要的特征,
还可以处理缺失值和异常值,不需要进行特殊的数据预处理。
然而,随机森林回归算法也有一些劣势,
首先,它的训练过程相对较慢,尤其是在数据集较大或特征维度较高的情况下;
其次,在某些情况下,它可能过于依赖输入数据的随机性,导致预测结果的不稳定。
此外,随机森林算法在处理那些需要精确控制的问题时可能效果不佳。
【scikit-learn基础】--『监督学习』之 随机森林回归的更多相关文章
- 机器学习实战基础(三十八):随机森林 (五)RandomForestRegressor 之 用随机森林回归填补缺失值
简介 我们从现实中收集的数据,几乎不可能是完美无缺的,往往都会有一些缺失值.面对缺失值,很多人选择的方式是直接将含有缺失值的样本删除,这是一种有效的方法,但是有时候填补缺失值会比直接丢弃样本效果更好, ...
- MATLAB随机森林回归模型
MATLAB随机森林回归模型: 调用matlab自带的TreeBagger.m T=textread('E:\datasets-orreview\discretized-regression\10bi ...
- 机器学习之路:python 集成回归模型 随机森林回归RandomForestRegressor 极端随机森林回归ExtraTreesRegressor GradientBoostingRegressor回归 预测波士顿房价
python3 学习机器学习api 使用了三种集成回归模型 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.dat ...
- Python基础『一』
内置数据类型 数据名称 例子 数字: Bool,Complex,Float,Integer True/False; z=a+bj; 1.23; 123 字符串: String '123456' 元组: ...
- Python基础『二』
目录 语句,表达式 赋值语句 打印语句 分支语句 循环语句 函数 函数的作用 函数的三要素 函数定义 DEF语句 RETURN语句 函数调用 作用域 闭包 递归函数 匿名函数 迭代 语句,表达式 赋值 ...
- pyspark RandomForestRegressor 随机森林回归
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jun 8 09:27:08 2018 ...
- 机器学习实战基础(三十七):随机森林 (四)之 RandomForestRegressor 重要参数,属性与接口
RandomForestRegressor class sklearn.ensemble.RandomForestRegressor (n_estimators=’warn’, criterion=’ ...
- 机器学习实战基础(三十五):随机森林 (二)之 RandomForestClassifier 之重要参数
RandomForestClassifier class sklearn.ensemble.RandomForestClassifier (n_estimators=’10’, criterion=’g ...
- Python机器学习笔记——随机森林算法
随机森林算法的理论知识 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法.随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代 ...
- 随机森林random forest及python实现
引言想通过随机森林来获取数据的主要特征 1.理论根据个体学习器的生成方式,目前的集成学习方法大致可分为两大类,即个体学习器之间存在强依赖关系,必须串行生成的序列化方法,以及个体学习器间不存在强依赖关系 ...
随机推荐
- Microsoft Build 2021大会开始后,Develop Blog一系列更新
.NET BLOG 发布.NET 6预览版4 https://devblogs.microsoft.com/dotnet/announcing-net-6-preview-4/ 发布.NET MAUI ...
- Solution -「洛谷 P3600」随机数生成器
Desciption Link. 给定一个值域在 \([1,x]\) 的长度为 \(n\) 的序列(由随机数构成),求给定一组区间中的最小值的最大值的期望. Solution 记: \[w=\max\ ...
- JVM面试题、关键原理、JMM
boolean:占用1个字节,取值为true或false. byte:占用1个字节,范围为-128到127. short:占用2个字节,范围为-32,768到32,767. int:占用4个字节,范围 ...
- DevOps|破除壁垒,重塑协作-业务闭环释放产研运协作巨大效能
- 会议太多了,员工开会效率降低了50%! 上篇文章<研发效能组织架构:职能独立vs业务闭环>介绍了职能独立型组织架构和业务闭环型组织架构的特点,优劣势.也许有的小伙伴可能对这两种组织架构 ...
- 如何配置.h头文件include“”相对路径
编译工程时,找的是当前main.c文件下的.h文件,如果当前路径下没有就会报错,当前路径用.\表示,上一级目录用..\表示. 如果你的main.h文件在main.c的上一级目录中Include 文件夹 ...
- Debian12安装.NET7 SDK
Debian,作为最受欢迎的 Linux 发行版之一,于 2023 年 6 月 10 日正式发布了其最新版本 Debian 12,代号"Bookworm".Debian 12 带来 ...
- MySQL索引、事务与存储引擎
MySQL索引.事务与存储引擎 索引介绍 1.索引的概念 索引是一个排序的列表,在这个列表中存储着索引的值和包含这个值的数据所在行的物理地址(类似于C语言的链表通过指针指向数据记录的内存地址). 使用 ...
- 苹果电脑开不了机,mac时间机器备份加速,以及识别不到u盘的方法
平淡无奇的一天,上班后,我按照正常流程,揭开我亲爱的mac的盖子.屏幕没有如昨天一样照亮我的脸庞,擦,电用完了吗? 我充上电,半小时后,电池都热了,依然开不了机.打售后电话,售后姐姐亲切的指导各种我使 ...
- 【本博客所有关于git文章迭代汇总】git操作(暂存,回退,绑定远程等),看这一篇就够了
1.git常用操作 git 小白操作,无非是clone,然后拉取,提交分支,第一次clone的时候,关联远程分支可能会遇到问题,可以看第四条git关联远程分支 # 在当前目录新建一个Git代码库 $ ...
- Filter入门实例
一.介绍 Filter:Filter是Servlet的"加强版",它主要用于对用户请求进行预处理,也可对HttpServletResponse进行后处理,是个典型的"处理 ...