#容斥,广搜#nssl 1458 HR的疑惑 nssl 1460 逛机房
nssl 1458 HR的疑惑
题目
求\([1\sim n]\)中有多少个正整数\(x\)满足
\]
其中\(n\leq 10^{18}\)
分析
枚举指数,想要不重复必然是质数或互不相同的质数之积,
容斥求方案数,对于一个指数\(x\),不考虑重复的答案为\(\lfloor\sqrt[x]{n}\rfloor\)
注意特判1,将1每次统计时都减掉,最后再加上1
代码
#include <cstdio>
#include <cmath>
#include <algorithm>
#define rr register
using namespace std;
typedef long long lll; lll n; int xo[66011],sum,ans;
const int prime[17]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59};
signed main(){
scanf("%lld",&n),xo[0]=0;
for (rr int i=1;i<65536;++i) xo[i]=xo[i&(i-1)]+1;
for (rr int i=0;i<17;++i){
rr int now=pow(n,1.0/prime[i]),sum=now-1;
if (now<2) break;
for (rr int j=1;j<(1<<i);++j){
rr int G=1,flag=1;
for (rr int k=0;k<i;++k)
if ((j>>k)&1){
if (G>now/prime[k]) {flag=0; break;}
G*=prime[k];
}
if (!flag) continue;
rr int t=pow(now,1.0/G)-1;
if (t<1) continue;
sum+=(xo[j]&1)?-t:t;
}
ans+=sum;
}
return !printf("%d",ans+1);
}
nssl 1460 逛机房

分析
以完全平方数为源点广搜预处理所有答案,
原来的删除变成了添加,要注意0以及不能删掉数字
代码
#include <cstdio>
#include <cctype>
#include <cstring>
#define rr register
using namespace std;
const int N=1000011;
int dis[N],q[N],ox[N],head,tail;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline void doit(int y,int x){
if (dis[y]>dis[x]+1&&ox[y]>=ox[x])
dis[y]=dis[x]+1,q[++tail]=y;
}
signed main(){
memset(dis,42,sizeof(dis)),head=1,tail=0,dis[0]=0;
for (rr int i=1;i<=1000;++i) dis[i*i]=0,q[++tail]=i*i;
for (rr int i=10;i<N;i*=10) ox[i]=1; --tail;
for (rr int i=11;i<N;++i) ox[i]+=ox[i-1];
while (head<=tail){
rr int x=q[head++];
for (rr int i=0;i<10;++i)
for (rr int j=0;j<6;++j)
switch (j){
case 0:doit(x/10*10+i,x); break;
case 1:doit((x/100*10+i)*10+(x%10),x); break;
case 2:doit((x/1000*10+i)*100+(x%100),x); break;
case 3:doit((x/10000*10+i)*1000+(x%1000),x); break;
case 4:doit((x/100000*10+i)*10000+(x%10000),x); break;
case 5:doit(i*100000+(x%100000),x); break;
}
if (x>99999) continue;
for (rr int i=0;i<10;++i) doit(x*10+i,x),doit((x/10*10+i)*10+(x%10),x);
for (rr int i=0;i<10;++i) doit((x/100*10+i)*100+(x%100),x);
for (rr int i=0;i<10;++i) doit((x/1000*10+i)*1000+(x%1000),x);
for (rr int i=0;i<10;++i) doit((x/10000*10+i)*10000+(x%10000),x);
for (rr int i=0;i<10;++i) doit(i*100000+(x%100000),x);
}
for (rr int Q=iut();Q;--Q)
print(dis[iut()]),putchar(10);
return 0;
}
#容斥,广搜#nssl 1458 HR的疑惑 nssl 1460 逛机房的更多相关文章
- [SCOI2010]幸运数字(容斥+爆搜)
在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那些号码,比如68,666,888都是“幸运号码”!但是这种“幸运号码”总是 ...
- 【Luogu】P2567幸运数字(容斥爆搜)
题目链接 先预处理出幸运数,把成倍数关系的剔掉,然后用容斥原理搜索一下. 这里的容斥很像小学学的那个“班上有n个同学,有a个同学喜欢数学,b个同学喜欢语文……”那样. #include<cstd ...
- BZOJ2839 : 集合计数 (广义容斥定理)
题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...
- 【做题】51NOD1518 稳定多米诺覆盖——容斥&dp
题意:求有多少种方案,用多米诺骨牌覆盖一个\(n\times m\)的棋盘,满足任意一对相邻行和列都至少有一个骨牌横跨.对\(10^9+7\)取模. \(n,m \leq 16\) 首先,这个问题的约 ...
- 2019.01.17 bzoj1853: [Scoi2010]幸运数字(容斥+dfs)
传送门 搜索菜题,然而第一次没有注意然后爆longlonglong longlonglong了. 题意:称所有数位由6,86,86,8组成的数为幸运数字,问一个一个区间[l,r][l,r][l,r]中 ...
- HDU 4135 Co-prime 欧拉+容斥定理
Co-prime Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- 【BZOJ1853】幸运数字(搜索,容斥)
[BZOJ1853]幸运数字(搜索,容斥) 题面 BZOJ 洛谷 题解 成功轰下洛谷rk1,甚至超越了一个打表选手 这题思路很明显吧,先搞出来所有范围内的合法数字,然后直接容斥, 容斥的话显然没有别的 ...
- BZOJ1042:[HAOI2008]硬币购物(DP,容斥)
Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一 ...
- bzoj 1853 容斥 + 搜索
思路:先把所有幸运数字找出来, 把没有用的去掉,然后爆搜容斥,因为最多只会搜十几个就超过限制了, 所以是可行的. #include<bits/stdc++.h> #define LL lo ...
- uoj#422. 【集训队作业2018】小Z的礼物(MIn-Max容斥+插头dp)
题面 传送门 题解 好迷-- 很明显它让我们求的是\(Max(S)\),我们用\(Min-Max\)容斥,因为\(Min(S)\)是很好求的,只要用方案数除以总方案数算出概率,再求出倒数就是期望了 然 ...
随机推荐
- 深入理解Go语言(04):scheduler调度器-GMP里结构体源码分析
在前面一节中简单介绍了golang的调度模型-GPM模型,介绍了他们各自的作用.这篇文章就来看看他们的源码结构. Go版本:go1.13.9 M结构体 M结构体是OS线程的一个抽象,主要负责结合P运行 ...
- less变量书写及样式混入
定义变量 定义混入样式 变量及混入样式使用 样式文件中 ~@代表src
- 使用Gulp压缩静态资源
如果希望对在静态页面中引入的相关资源进行压缩(比如:CSS,JavaScript,图片等),可以使用Gulp实现. 当然,还可以使用其他打包工具,比如:Grunt,Webpack等等. Gulp是什么 ...
- 硬件开发笔记(九): 硬件开发基本流程,制作一个USB转RS232的模块(八):创建asm1117-3.3V封装库并关联原理图元器件
前言 有了原理图,可以设计硬件PCB,在设计PCB之间还有一个协同优先动作,就是映射封装,原理图库的元器件我们是自己设计的.为了更好的表述封装设计过程,本文描述了一个创建asm1117-3.3V封 ...
- Cocos Creator 2.x升级至Cocos Creator 3.x
1.导入类时,批量导入 2.导入 override...关键字时,批量导入 3.this.node.scale = 0.6-->this.node.setScale(0.6, 0.6); 4.n ...
- 各类LLM模型分析比较
Large Language Model 模型对比 对于LLM模型框架主要如下3类[1]:1.autoregressive,2.autoencoding,3.encoder-decoder.主要对3类 ...
- 如何将应用一键部署至多个环境?丨Walrus教程
在 Walrus 平台上,运维团队在资源定义(Resource Definition)中声明提供的资源类型,通过设置匹配规则,将不同的资源部署模板应用到不同类型的环境.项目等.与此同时,研发人员无需关 ...
- C++学习笔记之指针引用
目录 指针 指针定义 左值与右值 指针数组与数组指针 const与指针 指针的指针 NULL指针 内存泄漏(Memory Leak)问题 智能指针 引用 指针 指针定义 指针定义的基本形式:指针本身就 ...
- 【深度学习】神经网络正则化方法之Dropout
前言 正则化是一种广泛用于机器学习和深度学习的手段,它的目的就是阻碍模型过度学习(过拟合),从而提升算法的泛化能力. Dropout 是一种常见的缓解过拟合的方法.接下来,本文将从原理和实践来介绍Dr ...
- .NET开源快速、强大、免费的电子表格组件
前言 今天大姚给大家分享一个.NET开源(MIT License).快速.强大.免费的电子表格组件,支持数据格式.冻结.大纲.公式计算.图表.脚本执行等.兼容 Excel 2007 (.xlsx) 格 ...