#容斥,广搜#nssl 1458 HR的疑惑 nssl 1460 逛机房
nssl 1458 HR的疑惑
题目
求\([1\sim n]\)中有多少个正整数\(x\)满足
\]
其中\(n\leq 10^{18}\)
分析
枚举指数,想要不重复必然是质数或互不相同的质数之积,
容斥求方案数,对于一个指数\(x\),不考虑重复的答案为\(\lfloor\sqrt[x]{n}\rfloor\)
注意特判1,将1每次统计时都减掉,最后再加上1
代码
#include <cstdio>
#include <cmath>
#include <algorithm>
#define rr register
using namespace std;
typedef long long lll; lll n; int xo[66011],sum,ans;
const int prime[17]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59};
signed main(){
scanf("%lld",&n),xo[0]=0;
for (rr int i=1;i<65536;++i) xo[i]=xo[i&(i-1)]+1;
for (rr int i=0;i<17;++i){
rr int now=pow(n,1.0/prime[i]),sum=now-1;
if (now<2) break;
for (rr int j=1;j<(1<<i);++j){
rr int G=1,flag=1;
for (rr int k=0;k<i;++k)
if ((j>>k)&1){
if (G>now/prime[k]) {flag=0; break;}
G*=prime[k];
}
if (!flag) continue;
rr int t=pow(now,1.0/G)-1;
if (t<1) continue;
sum+=(xo[j]&1)?-t:t;
}
ans+=sum;
}
return !printf("%d",ans+1);
}
nssl 1460 逛机房

分析
以完全平方数为源点广搜预处理所有答案,
原来的删除变成了添加,要注意0以及不能删掉数字
代码
#include <cstdio>
#include <cctype>
#include <cstring>
#define rr register
using namespace std;
const int N=1000011;
int dis[N],q[N],ox[N],head,tail;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline void doit(int y,int x){
if (dis[y]>dis[x]+1&&ox[y]>=ox[x])
dis[y]=dis[x]+1,q[++tail]=y;
}
signed main(){
memset(dis,42,sizeof(dis)),head=1,tail=0,dis[0]=0;
for (rr int i=1;i<=1000;++i) dis[i*i]=0,q[++tail]=i*i;
for (rr int i=10;i<N;i*=10) ox[i]=1; --tail;
for (rr int i=11;i<N;++i) ox[i]+=ox[i-1];
while (head<=tail){
rr int x=q[head++];
for (rr int i=0;i<10;++i)
for (rr int j=0;j<6;++j)
switch (j){
case 0:doit(x/10*10+i,x); break;
case 1:doit((x/100*10+i)*10+(x%10),x); break;
case 2:doit((x/1000*10+i)*100+(x%100),x); break;
case 3:doit((x/10000*10+i)*1000+(x%1000),x); break;
case 4:doit((x/100000*10+i)*10000+(x%10000),x); break;
case 5:doit(i*100000+(x%100000),x); break;
}
if (x>99999) continue;
for (rr int i=0;i<10;++i) doit(x*10+i,x),doit((x/10*10+i)*10+(x%10),x);
for (rr int i=0;i<10;++i) doit((x/100*10+i)*100+(x%100),x);
for (rr int i=0;i<10;++i) doit((x/1000*10+i)*1000+(x%1000),x);
for (rr int i=0;i<10;++i) doit((x/10000*10+i)*10000+(x%10000),x);
for (rr int i=0;i<10;++i) doit(i*100000+(x%100000),x);
}
for (rr int Q=iut();Q;--Q)
print(dis[iut()]),putchar(10);
return 0;
}
#容斥,广搜#nssl 1458 HR的疑惑 nssl 1460 逛机房的更多相关文章
- [SCOI2010]幸运数字(容斥+爆搜)
在中国,很多人都把6和8视为是幸运数字!lxhgww也这样认为,于是他定义自己的“幸运号码”是十进制表示中只包含数字6和8的那些号码,比如68,666,888都是“幸运号码”!但是这种“幸运号码”总是 ...
- 【Luogu】P2567幸运数字(容斥爆搜)
题目链接 先预处理出幸运数,把成倍数关系的剔掉,然后用容斥原理搜索一下. 这里的容斥很像小学学的那个“班上有n个同学,有a个同学喜欢数学,b个同学喜欢语文……”那样. #include<cstd ...
- BZOJ2839 : 集合计数 (广义容斥定理)
题目 一个有 \(N\) 个 元素的集合有 \(2^N\) 个不同子集(包含空集), 现在要在这 \(2^N\) 个集合中取出若干集合(至少一个), 使得它们的交集的元素个数为 \(K\) ,求取法的 ...
- 【做题】51NOD1518 稳定多米诺覆盖——容斥&dp
题意:求有多少种方案,用多米诺骨牌覆盖一个\(n\times m\)的棋盘,满足任意一对相邻行和列都至少有一个骨牌横跨.对\(10^9+7\)取模. \(n,m \leq 16\) 首先,这个问题的约 ...
- 2019.01.17 bzoj1853: [Scoi2010]幸运数字(容斥+dfs)
传送门 搜索菜题,然而第一次没有注意然后爆longlonglong longlonglong了. 题意:称所有数位由6,86,86,8组成的数为幸运数字,问一个一个区间[l,r][l,r][l,r]中 ...
- HDU 4135 Co-prime 欧拉+容斥定理
Co-prime Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- 【BZOJ1853】幸运数字(搜索,容斥)
[BZOJ1853]幸运数字(搜索,容斥) 题面 BZOJ 洛谷 题解 成功轰下洛谷rk1,甚至超越了一个打表选手 这题思路很明显吧,先搞出来所有范围内的合法数字,然后直接容斥, 容斥的话显然没有别的 ...
- BZOJ1042:[HAOI2008]硬币购物(DP,容斥)
Description 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4.某人去商店买东西,去了tot次.每次带di枚ci硬币,买si的价值的东西.请问每次有多少种付款方法. Input 第一 ...
- bzoj 1853 容斥 + 搜索
思路:先把所有幸运数字找出来, 把没有用的去掉,然后爆搜容斥,因为最多只会搜十几个就超过限制了, 所以是可行的. #include<bits/stdc++.h> #define LL lo ...
- uoj#422. 【集训队作业2018】小Z的礼物(MIn-Max容斥+插头dp)
题面 传送门 题解 好迷-- 很明显它让我们求的是\(Max(S)\),我们用\(Min-Max\)容斥,因为\(Min(S)\)是很好求的,只要用方案数除以总方案数算出概率,再求出倒数就是期望了 然 ...
随机推荐
- virtualapp安装应用流程源码分析
1. HomeActivity 为处理的入口 @Override protected void onActivityResult(int requestCode, int resultCode, In ...
- Mybatis-Plus自动生成代码的CodeGenerator代码
官方地址:Mybatis-Plus:https://mp.baomidou.com/guide/generator.html pom中导入mybatis plus的jar包,因为后面会涉及到代码生成, ...
- VS Code实现SSH远程开发
最近收获一台新台式机,但是个人主要还是使用自己的笔记本,用了几天远程控制,感觉各种不方便,最终决定配置一下VS Code实现SSH远程开发,特此记录. 首先介绍一下环境,控制端是Windows 11, ...
- 硬件开发笔记(五): 硬件开发基本流程,制作一个USB转RS232的模块(四):创建CON连接器件封装并关联原理图元器件
前言 有了原理图,可以设计硬件PCB,在设计PCB之间还有一个协同优先动作,就是映射封装,原理图库的元器件我们是自己设计的.为了更好的表述封装设计过程,本文描述了一个创建CON标准连接件封装,创建 ...
- .NET Core 引发的异常:“sqlsugar.sqlsugarexception” 位于 system.private.corelib.dll 中
运行一个.NET Core 项目 报错:引发的异常:"sqlsugar.sqlsugarexception" 位于 system.private.corelib.dll 中 . 我 ...
- 【LeetCode二叉树#03】翻转二叉树的几种方法
翻转二叉树 力扣题目链接(opens new window) 翻转一棵二叉树. 这道题目背后有一个让程序员心酸的故事,听说 Homebrew的作者Max Howell,就是因为没在白板上写出翻转二叉树 ...
- Linux的这些命令你需要掌握
查看进程: 查看所有进程:ps -ef 查看指定的进程: ps -ef|grep pid(进程号) 查看前40个内存占用的进程: ps auxw|head -1;ps auxw|sort -rn -k ...
- 【Azure API 管理】API Management service (APIM) 如何实现禁止外网访问
问题描述 API Management service 设置禁止外网访问,请求通过外网(Internet)将无法解析到APIM的网关地址,只能通过APIM所集成的内网(Virtual Network) ...
- curl比较有用的参数
精选参数: --include // -i curl的输出中包含http头信息--verbose // 比-i更加丰富,>表示请求的信息, <表示curl接收的信息 *表示curl额外提 ...
- STL-bitset模拟实现
#include<time.h> #include<string> #include<vector> #include<iostream> using ...