Mayor's posters
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 54067   Accepted: 15713

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.  Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed. 
The picture below illustrates the case of the sample input. 

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4
题解:

本题大意:给定一些海报,可能相互重叠,告诉你每个海报的宽度(高度都一样的)和先后叠放顺序,问没有被完全盖住的有多少张?

海报最多10000张,但是墙有10000000块瓷砖长,海报不会落在瓷砖中间。

跟颜色段那道题很像,但是写了下wa,最后借助bin神的思路才写出来;

ac代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
const int INF=0x3f3f3f3f;
#define mem(x,y) memset(x,y,sizeof(x))
#define SI(x) scanf("%d",&x)
#define PI(x) printf("%d",x)
#define SD(x,y) scanf("%lf%lf",&x,&y)
#define P_ printf(" ")
#define ll root<<1
#define rr root<<1|1
#define lson ll,l,mid
#define rson rr,mid+1,r
#define V(x) tree[x]
typedef long long LL;
const int MAXN=100010;
bool tree[MAXN<<2];
int h[10000010],seg[MAXN<<1];
struct Node{
int a,b;
Node init(int c,int d){
a=c;b=d;
}
};
Node dt[MAXN];
void build(int root,int l,int r){
V(root)=false;
int mid=(l+r)>>1;
if(l==r)return;
build(lson);build(rson);
}
bool query(int root,int l,int r,int A,int B){
int mid=(l+r)>>1;
if(V(root))return false;//线段树都是从上倒下访问的,覆盖的线段是true,就返回false
bool bcover;
if(l==A&&r==B){
V(root)=true;
return true;
}
if(mid>=B)bcover=query(lson,A,B);
else if(mid<A)bcover=query(rson,A,B);
else{
int b1=query(lson,A,mid);//
int b2=query(rson,mid+1,B);//
bcover=b1||b2;
}
if(V(ll)&&V(rr))V(root)=true;
return bcover;
}
int main(){
int T,N;
SI(T);
while(T--){
SI(N);
int a,b;
int len=0,val=0;
for(int i=0;i<N;i++){
SI(a);SI(b);
dt[i].init(a,b);
seg[len++]=a;seg[len++]=b;
}
sort(seg,seg+len);
int k=unique(seg,seg+len)-seg;
for(int i=0;i<k;i++)h[seg[i]]=i;
int ans=0;
build(1,0,k-1);
for(int i=N-1;i>=0;i--){//从上往下;
if(query(1,0,k-1,h[dt[i].a],h[dt[i].b]))ans++;
}
printf("%d\n",ans);
}
return 0;
}

  wa代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
const int INF=0x3f3f3f3f;
#define mem(x,y) memset(x,y,sizeof(x))
#define SI(x) scanf("%d",&x)
#define PI(x) printf("%d",x)
#define SD(x,y) scanf("%lf%lf",&x,&y)
#define P_ printf(" ")
#define ll root<<1
#define rr root<<1|1
#define lson ll,l,mid
#define rson rr,mid+1,r
#define V(x) tree[x]
typedef long long LL;
const int MAXN=20010;
int color[MAXN];
int temp;
int tree[MAXN<<2];
int seg[MAXN];
struct Node{
int a,b;
Node init(int c,int d){
a=c;b=d;
}
};
Node dt[MAXN];
void pushdown(int root){
if(V(root)>0){
V(ll)=V(root);
V(rr)=V(root);
V(root)=-1;
}
}
void build(int root,int l,int r){
int mid=(l+r)>>1;
V(root)=0;
if(l==r)return;
build(lson);build(rson);
}
void update(int root,int l,int r,int A,int B,int v){
if(l>=A&&r<=B){
V(root)=v;
return;
}
int mid=(l+r)>>1;
pushdown(root);
if(mid>=A)update(lson,A,B,v);
if(mid<B)update(rson,A,B,v);
V(root)=-1;
}
void query(int root,int l,int r){
int mid=(l+r)>>1;
if(temp==V(root))return;
if(!V(root)){
temp=0;return;
}
if(V(root)!=-1){
if(temp!=V(root)){
temp=V(root);
color[temp]++;
return;
}
return;
}
if(l==r)return;
query(lson);
query(rson);
}
int main(){
int T,N;
SI(T);
while(T--){
mem(color,0);
SI(N);
int a,b;
int len=0;
for(int i=0;i<N;i++){
SI(a);SI(b);
dt[i].init(a,b);
seg[len++]=a;seg[len++]=b;
}
sort(seg,seg+len);
int k=unique(seg,seg+len)-seg;
build(1,1,k);
for(int i=0;i<N;i++){
a=lower_bound(seg,seg+k,dt[i].a)-seg;
b=lower_bound(seg,seg+k,dt[i].b)-seg;
update(1,1,k,a+1,b,i+1);
}
temp=0;
query(1,1,k);
int ans=0;
for(int i=1;i<=N;i++){
if(color[i])ans++;
}
printf("%d\n",ans);
}
return 0;
}

  

Mayor's posters(离散化线段树)的更多相关文章

  1. 【POJ】2528 Mayor's posters ——离散化+线段树

    Mayor's posters Time Limit: 1000MS    Memory Limit: 65536K   Description The citizens of Bytetown, A ...

  2. poj 2528 Mayor's posters(线段树+离散化)

    /* poj 2528 Mayor's posters 线段树 + 离散化 离散化的理解: 给你一系列的正整数, 例如 1, 4 , 100, 1000000000, 如果利用线段树求解的话,很明显 ...

  3. POJ 2528 Mayor's posters(线段树/区间更新 离散化)

    题目链接: 传送门 Mayor's posters Time Limit: 1000MS     Memory Limit: 65536K Description The citizens of By ...

  4. D - Mayor's posters(线段树+离散化)

    题目: The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campai ...

  5. Mayor's posters (线段树加离散化)

    个人心得:线段树也有了一定的掌握,线段树对于区间问题的高效性还是挺好的,不过当区间过大时就需要离散化了,一直不了解离散化是什么鬼,后面去看了下 离散化,把无限空间中有限的个体映射到有限的空间中去,以此 ...

  6. POJ-2528 Mayor's posters(线段树区间更新+离散化)

    http://poj.org/problem?id=2528 https://www.luogu.org/problem/UVA10587 Description The citizens of By ...

  7. 【POJ 2528】Mayor’s posters(线段树+离散化)

    题目 给定每张海报的覆盖区间,按顺序覆盖后,最后有几张海报没有被其他海报完全覆盖.离散化处理完区间端点,排序后再给相差大于1的相邻端点之间再加一个点,再排序.线段树,tree[i]表示节点i对应区间是 ...

  8. POJ 2528 Mayor's posters(线段树区间染色+离散化或倒序更新)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 59239   Accepted: 17157 ...

  9. POJ-2528 Mayor's posters (线段树区间更新+离散化)

    题目分析:线段树区间更新+离散化 代码如下: # include<iostream> # include<cstdio> # include<queue> # in ...

随机推荐

  1. data stage走起

    如题,希望以后可以找到相应的工作.(已经工作3年以上了)

  2. Spring、Hello AOP

    AOP 概念:http://blog.csdn.net/moreevan/article/details/11977115 AOP 所使用到的jar 包: aspectjrt.jar common-a ...

  3. linux学习之(四)-用户、组的操作,给文件文件夹设置组,更改目录权限、文件权限

    命令帮助查看: man 命令(查看一个命令的详细帮助信息) 例:man useradd 或者用  -h   格式   命令 -h(查看一个命令的简要帮助) 例:useradd -h 用户: 在user ...

  4. wx.Frame

    wx.Frame A frame is a window whose size and position can (usually) be changed by the user. It usuall ...

  5. c++ string.find()函数的陷阱

    string.find(char *)查找字符串中是否包含子串 找到:返回第一个索引 没有找到:返回一个很大的随机数字而不是返回负数(这是个坑) 所以不能这么写if (string.find(str) ...

  6. 传纸条(一)(双线程dp)

    传纸条(一) 时间限制:2000 ms  |  内存限制:65535 KB 难度:5   描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行 ...

  7. 设置dialog显示,自定义时间到后dialog消失

    方法一: public class MyDialog extends Dialog { private int FLAG_DISMISS = 1; private boolean flag = tru ...

  8. Java学习笔记---继承和super的用法

    自从换了个视频教学,感觉比原来那个好多了,就是学校网速太渣,好多视频看一会卡半天,只能先看看已经下载的了. 不过也好,虽然不能从开始开始重新开,但是已经看过一次,在看一次也是好的,就当巩固学习了. 继 ...

  9. some knowledge t

    NSNumber static 看下面例子  gCount可以在Person 文件中使用  在main 中不行 @property()括号中可以填的属性 国际化 OC中的快捷键操作 operation ...

  10. C++学习笔录2

    1.如果一个类要成为基类,那么它的成员变量声明成受保护的变量,既用关键字protected修饰. 2.处理共同继承产生的二义性:采用虚继承方式,当出现两个相同的成员时,编译器会自动删除其中一个.其方法 ...