Mayor's posters
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 54067   Accepted: 15713

Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.  Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed. 
The picture below illustrates the case of the sample input. 

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4
题解:

本题大意:给定一些海报,可能相互重叠,告诉你每个海报的宽度(高度都一样的)和先后叠放顺序,问没有被完全盖住的有多少张?

海报最多10000张,但是墙有10000000块瓷砖长,海报不会落在瓷砖中间。

跟颜色段那道题很像,但是写了下wa,最后借助bin神的思路才写出来;

ac代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
const int INF=0x3f3f3f3f;
#define mem(x,y) memset(x,y,sizeof(x))
#define SI(x) scanf("%d",&x)
#define PI(x) printf("%d",x)
#define SD(x,y) scanf("%lf%lf",&x,&y)
#define P_ printf(" ")
#define ll root<<1
#define rr root<<1|1
#define lson ll,l,mid
#define rson rr,mid+1,r
#define V(x) tree[x]
typedef long long LL;
const int MAXN=100010;
bool tree[MAXN<<2];
int h[10000010],seg[MAXN<<1];
struct Node{
int a,b;
Node init(int c,int d){
a=c;b=d;
}
};
Node dt[MAXN];
void build(int root,int l,int r){
V(root)=false;
int mid=(l+r)>>1;
if(l==r)return;
build(lson);build(rson);
}
bool query(int root,int l,int r,int A,int B){
int mid=(l+r)>>1;
if(V(root))return false;//线段树都是从上倒下访问的,覆盖的线段是true,就返回false
bool bcover;
if(l==A&&r==B){
V(root)=true;
return true;
}
if(mid>=B)bcover=query(lson,A,B);
else if(mid<A)bcover=query(rson,A,B);
else{
int b1=query(lson,A,mid);//
int b2=query(rson,mid+1,B);//
bcover=b1||b2;
}
if(V(ll)&&V(rr))V(root)=true;
return bcover;
}
int main(){
int T,N;
SI(T);
while(T--){
SI(N);
int a,b;
int len=0,val=0;
for(int i=0;i<N;i++){
SI(a);SI(b);
dt[i].init(a,b);
seg[len++]=a;seg[len++]=b;
}
sort(seg,seg+len);
int k=unique(seg,seg+len)-seg;
for(int i=0;i<k;i++)h[seg[i]]=i;
int ans=0;
build(1,0,k-1);
for(int i=N-1;i>=0;i--){//从上往下;
if(query(1,0,k-1,h[dt[i].a],h[dt[i].b]))ans++;
}
printf("%d\n",ans);
}
return 0;
}

  wa代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
using namespace std;
const int INF=0x3f3f3f3f;
#define mem(x,y) memset(x,y,sizeof(x))
#define SI(x) scanf("%d",&x)
#define PI(x) printf("%d",x)
#define SD(x,y) scanf("%lf%lf",&x,&y)
#define P_ printf(" ")
#define ll root<<1
#define rr root<<1|1
#define lson ll,l,mid
#define rson rr,mid+1,r
#define V(x) tree[x]
typedef long long LL;
const int MAXN=20010;
int color[MAXN];
int temp;
int tree[MAXN<<2];
int seg[MAXN];
struct Node{
int a,b;
Node init(int c,int d){
a=c;b=d;
}
};
Node dt[MAXN];
void pushdown(int root){
if(V(root)>0){
V(ll)=V(root);
V(rr)=V(root);
V(root)=-1;
}
}
void build(int root,int l,int r){
int mid=(l+r)>>1;
V(root)=0;
if(l==r)return;
build(lson);build(rson);
}
void update(int root,int l,int r,int A,int B,int v){
if(l>=A&&r<=B){
V(root)=v;
return;
}
int mid=(l+r)>>1;
pushdown(root);
if(mid>=A)update(lson,A,B,v);
if(mid<B)update(rson,A,B,v);
V(root)=-1;
}
void query(int root,int l,int r){
int mid=(l+r)>>1;
if(temp==V(root))return;
if(!V(root)){
temp=0;return;
}
if(V(root)!=-1){
if(temp!=V(root)){
temp=V(root);
color[temp]++;
return;
}
return;
}
if(l==r)return;
query(lson);
query(rson);
}
int main(){
int T,N;
SI(T);
while(T--){
mem(color,0);
SI(N);
int a,b;
int len=0;
for(int i=0;i<N;i++){
SI(a);SI(b);
dt[i].init(a,b);
seg[len++]=a;seg[len++]=b;
}
sort(seg,seg+len);
int k=unique(seg,seg+len)-seg;
build(1,1,k);
for(int i=0;i<N;i++){
a=lower_bound(seg,seg+k,dt[i].a)-seg;
b=lower_bound(seg,seg+k,dt[i].b)-seg;
update(1,1,k,a+1,b,i+1);
}
temp=0;
query(1,1,k);
int ans=0;
for(int i=1;i<=N;i++){
if(color[i])ans++;
}
printf("%d\n",ans);
}
return 0;
}

  

Mayor's posters(离散化线段树)的更多相关文章

  1. 【POJ】2528 Mayor's posters ——离散化+线段树

    Mayor's posters Time Limit: 1000MS    Memory Limit: 65536K   Description The citizens of Bytetown, A ...

  2. poj 2528 Mayor's posters(线段树+离散化)

    /* poj 2528 Mayor's posters 线段树 + 离散化 离散化的理解: 给你一系列的正整数, 例如 1, 4 , 100, 1000000000, 如果利用线段树求解的话,很明显 ...

  3. POJ 2528 Mayor's posters(线段树/区间更新 离散化)

    题目链接: 传送门 Mayor's posters Time Limit: 1000MS     Memory Limit: 65536K Description The citizens of By ...

  4. D - Mayor's posters(线段树+离散化)

    题目: The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campai ...

  5. Mayor's posters (线段树加离散化)

    个人心得:线段树也有了一定的掌握,线段树对于区间问题的高效性还是挺好的,不过当区间过大时就需要离散化了,一直不了解离散化是什么鬼,后面去看了下 离散化,把无限空间中有限的个体映射到有限的空间中去,以此 ...

  6. POJ-2528 Mayor's posters(线段树区间更新+离散化)

    http://poj.org/problem?id=2528 https://www.luogu.org/problem/UVA10587 Description The citizens of By ...

  7. 【POJ 2528】Mayor’s posters(线段树+离散化)

    题目 给定每张海报的覆盖区间,按顺序覆盖后,最后有几张海报没有被其他海报完全覆盖.离散化处理完区间端点,排序后再给相差大于1的相邻端点之间再加一个点,再排序.线段树,tree[i]表示节点i对应区间是 ...

  8. POJ 2528 Mayor's posters(线段树区间染色+离散化或倒序更新)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 59239   Accepted: 17157 ...

  9. POJ-2528 Mayor's posters (线段树区间更新+离散化)

    题目分析:线段树区间更新+离散化 代码如下: # include<iostream> # include<cstdio> # include<queue> # in ...

随机推荐

  1. 离线使用nuget

    先新建一个项目,将所有想保存下来或者要升级的package先安装或升级. 然后在项目中将packages文件夹全部拷贝出来,专门放到一个目录备用,以后的项目就可以根据此packages文件夹来离线使用 ...

  2. 图像 - 创建 头像V1.0

    byte[] logo //处理群头像信息 //byte[] logoByte = Convert.FromBase64String(logo); ////1.0 System.IO.MemorySt ...

  3. WPS Office手机版调用接口代码指导帖之一(Android)

    经常会有一些喜欢开发鼓捣的童鞋问我们,WPS Office手机版是否提供调用接口,希望在android中使用一个调用命令,直接调用WPS手机版来打开指定的DOC文件,而不用弹出一个程序可选列表(如果用 ...

  4. Android第三方应用分享图文到微信朋友圈 & 微信回调通知分享状态

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAWQAAAKUCAIAAAC8A9XzAAAABmJLR0QA/wD/AP+gvaeTAAAACXBIWX ...

  5. 查询无序列表中第K小元素

    当需要在无需列表中寻找第k小的元素时,一个显然的方法是将所有数据进行排序,然后检索k个元素.这种方法的运行时间为O(n log(n)). 无序列表调用分区函数将自身分解成两个子表,其长度为i和n-i. ...

  6. (转)iOS开发ARC内存管理技术要点

    转自:http://www.cnblogs.com/flyFreeZn/p/4264220.html 本文来源于我个人的ARC学习笔记,旨在通过简明扼要的方式总结出iOS开发中ARC(Automati ...

  7. Haffman编码(haffman树)

    Haffman编码 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 哈弗曼编码大家一定很熟悉吧(不熟悉也没关系,自己查去...).现在给你一串字符以及它们所对应的权值 ...

  8. POJ 2029 DP || 暴力

    在大矩形中找一个小矩形 使小矩形包括的*最多 暴力或者DP  水题 暴力: #include "stdio.h" #include "string.h" int ...

  9. 读取系统执行状态的shell脚本

    近期在学习shell.老大让写一个读取系统配置信息的脚本当作练习和工作验收,我就写了这么一个脚本,读取操作系统,内核,网卡,cpu,内存,磁盘等信息,目的是让看的人一眼就能看出这台机子的配置以及眼下的 ...

  10. UI标签库专题十三:JEECG智能开发平台 ckfinder(ckfinder插件标签)

    1. ckfinder(ckfinder插件标签) 1.1. 參数 属性名 类型 描写叙述 是否必须 默认值 name string 属性名称 是 null value string 默认值 否 nu ...