长度为l的用k种字符组成的字符串有k^l中 当中m个字符要不同样 那就是k^l*C(l, m)*(k-1)^m 有反复 要除以2 可是你mod n了 不能直接除 n不一定是素数 所以不能乘以逆元

所以我都mod 2倍的n 最后的结果再除以2 特判l = 1 和 m = 0的情况

#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long LL;
int vis[100010];
int prime[100010], c; void sieve(int n)
{
int m = sqrt(n+0.5);
memset(vis, 0, sizeof(vis));
vis[0] = vis[1] = 1;
for(int i = 2; i <= m; i++)
if(!vis[i])
for(int j = i*i; j <= n; j += i)
vis[j] = 1;
} int get_primes(int n)
{
sieve(n);
int c = 0;
for(int i = 2; i <= n; i++)
if(!vis[i])
prime[c++] = i;
return c;
}
LL pow(LL a, LL b, LL n)
{
LL ans = 1;
while(b)
{
if(b&1)
{
ans *= a;
ans %= n;
}
b >>= 1;
a *= a;
a %= n;
}
return ans;
}
LL work(LL x, LL y)
{
LL ans = 0;
while(x)
{
ans += x/y;
x /= y;
}
return ans;
}
LL cm(LL n, LL m, LL p)
{
LL ans = 1;
for(int i = 0; prime[i] <= n && i < c; i++)
{
LL x = work(n, prime[i]);
LL y = work(n-m, prime[i]);
LL z = work(m, prime[i]);
x -= y+z;
ans *= pow(prime[i], x, p);
ans %= p;
}
return ans;
}
LL cal(LL n, LL k, LL l, LL m)
{
LL ans = 1;
ans = ans * pow(k, l, n) % n;
ans = ans * pow(k-1, m, n) % n;
ans = ans * cm(l, m, n) % n;
return ans;
}
int main()
{
c = get_primes(100000);
int T;
int cas = 1;
scanf("%d", &T);
while(T--)
{
LL n, k, l, m;
scanf("%lld %lld %lld %lld", &n, &k, &l, &m);
if(m == 0)
{
printf("Case %d: %lld\n", cas++, pow(k, l, n)+1);
}
else if(k == 1)
printf("Case %d: 1\n", cas++);
else
printf("Case %d: %lld\n", cas++, cal(2*n, k, l, m)/2+1); }
return 0;
}

Light OJ 1318 Strange Game 组合数+高速幂+分解因子的更多相关文章

  1. LightOJ - 1318 - Strange Game(组合数)

    链接: https://vjudge.net/problem/LightOJ-1318 题意: In a country named "Ajob Desh", people pla ...

  2. Light OJ 1060 - nth Permutation(组合数)

    题目大意: 给你一个字符串,问这个字符串按照特定顺序排列之后,第n个字符串是哪个? 题目分析: 首先我们要会求解总个数.也就是共有len个字符,每个字符有ki个,那么总组合方式是多少种? 总组合方式就 ...

  3. Light OJ 1288 Subsets Forming Perfect Squares 高斯消元求矩阵的秩

    题目来源:Light OJ 1288 Subsets Forming Perfect Squares 题意:给你n个数 选出一些数 他们的乘积是全然平方数 求有多少种方案 思路:每一个数分解因子 每隔 ...

  4. HDU4869:Turn the pokers(费马小定理+高速幂)

    Problem Description During summer vacation,Alice stay at home for a long time, with nothing to do. S ...

  5. [BZOJ3209]花神的数论题 组合数+快速幂

    3209: 花神的数论题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2498  Solved: 1129[Submit][Status][Disc ...

  6. poj 1845(等比数列前n项和及高速幂)

    Sumdiv Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 13959   Accepted: 3433 Descripti ...

  7. HDU - 5187 - zhx&#39;s contest (高速幂+高速乘)

    zhx's contest Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) To ...

  8. UVA 11551 - Experienced Endeavour(矩阵高速幂)

    UVA 11551 - Experienced Endeavour 题目链接 题意:给定一列数,每一个数相应一个变换.变换为原先数列一些位置相加起来的和,问r次变换后的序列是多少 思路:矩阵高速幂,要 ...

  9. HDOJ--4869--Turn the pokers【组合数学+高速幂】

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4869 题意:有m张扑克.開始时所有正面朝下.你能够翻n次牌,每次能够翻xi张.翻拍规则就是正面朝下变背面朝 ...

随机推荐

  1. 杭电oj An easy problem

    </pre><h1 style="color: rgb(26, 92, 200);">An easy problem</h1><stron ...

  2. json对象的操作,json工具

    项目中经常用到json,现在把写了几个js函数,用来获取json对象或者json字符串的长度,以及获取其的key值,value值,并且返回. 这样以后可以直接拿来用,可以省去不少麻烦,也方便以后查看. ...

  3. 198,House Robber

    一.题目 You are a professional robber planning to rob houses along a street. Each house has a certain a ...

  4. 依赖于设备的位图(DDB) ,CreateCompatibleBitmap用法

    DDB(Device-dependent bitmap)依赖于具体设备,这主要体现在以下两个方面: DDB的颜色模式必需与输出设备相一致.例如,如果当前的显示设备是256色模式,那么DDB必然也是25 ...

  5. BZOJ 3240([Noi2013]矩阵游戏-费马小定理【矩阵推论】-%*s-快速读入)

    3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec   Memory Limit: 256 MB Submit: 123   Solved: 73 [ Submit][ St ...

  6. Winsock编程基础介绍 .

    相信很多人都对网络编程感兴趣,下面我们就来介绍,在网络编程中应用最广泛的编程接口Winsock API. 使用Winsock API的编程,应该了解一些TCP/IP的基础知识.虽然你可以直接使用Win ...

  7. TCP/IP之TCP交互数据流、成块数据流

    建立在TCP协议上的网络协议有telnet,ssh,ftp,http等等.这些协议根据数据吞吐量来分成两大类: (1)交互数据类型,例如telnet,ssh,这种类型的协议在大多数情况下只是做小流量的 ...

  8. ThinkPHP - 连贯操作

    /** * 连贯操作 * @return 无返回值 */ public function coherentOperation(){ //实例化模型 $user = M('User'); // +--- ...

  9. [Swust OJ 603]--吃饺子大王

      题目链接:http://acm.swust.edu.cn/problem/603/ Time limit(ms): 1000 Memory limit(kb): 65535   同学们还记得我们班 ...

  10. 五张图概括 什么是 ASP 、 ASP.NET (Web Pages,Web Forms ,MVC )

    当你看懂下面这五张图,我相信你对于学习.NET Web开发路线将不陌生!                                               来源: http://www.w3 ...