转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud

Series-Parallel Networks

Input: standard input

Output:  standard output

Time Limit: 5 seconds

Memory Limit: 32 MB

In this problem you are expected to count two-terminal series-parallel networks. These are electric networks considered topologically or geometrically, that is, without the electrical properties of the elements connected. One of the two terminals can be considered as the source and the other as the sink.

A two-terminal network will be considered series-parallel if it can be obtained iteratively in the following way:

q       A single edge is two-terminal series-parallel.

q       If G1 and G2 are two-terminal series-parallel, so is the network obtained by identifying the sources and sinks, respectively (parallel composition).

q       If G1 and G2 are two-terminal series-parallel, so is the network obtained by identifying the sink of G1with the source of G2 (series composition).

Note here that in a series-parallel network two nodes can be connected by multiple edges. Moreover, networks are regarded as equivalent, not only topologically, but also when interchange of elements in series brings them into congruence; otherwise stated, series interchange is an equivalence operation. For example, the following three networks are equivalent:

     

Similarly, parallel interchange is also an equivalence operation. For example, the following three networks are also equivalent:

Now, given a number N, you are expected to count the number of two-terminal series parallel networks containing exactly N edges. For example, for N = 4, there are exactly 10 series-parallel networks as shown below:

Input

Each line of the input file contains an integer N (1 £N£ 30) specifying the number of edges in the network.

A line containing a zero for N terminates the input and this input need not be considered.

Output

For each N in the input file print a line containing the number of two-terminal series-parallel networks that can be obtained using exactly N edges.

 

Sample Input

1

4

15

0

 

Sample Output

1

10

1399068


(World Final Warm-up Contest, Problem Setter: Rezaul Alam Chowdhury)

这道题目想了好久,最终还是参考了题解。

大致意思就是给你n条边,问你恰好用n条边,能构成几种串并联网络。(串联的各个部分可以任意调换,并联在一起的各个部分也可以任意调换,若通过调换可得,则二者视为等效)

分析:将每个网络都看成一棵树,为每次串联或者并联创建一个结点,并且把串联/并联部分看作该结点的子树,则可以转化为树形dp。

dp[i][j]表示每棵子树叶子数目不超过i,一共有j片叶子的方案数。

f[i]=dp[i-1][i],则根据可重复组合的公式,在有k个恰好包含i片叶子的子树时,其方案数等于C(f[i]+k-1,k);

dp[i][j]=∑(C(f[i]+k-1,k)*d[i-1][j-p*i])     k≥0,k*i<=j

另外注意处理好边界。

对于求这个组合数,想不出较好的方法,最终还是采用了刘汝佳在大白书上写的用double来做的方法(虽然我一度担心会因为double的精度问题会使得有所误差)。

 #include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
ll dp[][];
ll f[];
ll C(ll n,int m)
{
double ret=;
for(ll i=n+-m;i<=n;i++)
{
ret*=i;
}
for(int i=;i<=m;i++)ret/=i;
return (ll)(ret+0.5);
}
int main()
{
ios::sync_with_stdio(false);
int n=;
f[]=;
for(int i=;i<=n;i++){dp[][i]=;dp[i][]=;}
for(int i=;i<=n;i++)dp[i][]=;
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
dp[i][j]=;
for(int k=;i*k<=j;k++)
{
dp[i][j]+=C(f[i]+k-,k)*dp[i-][j-i*k];
}
}
f[i+]=dp[i][i+];
}
for(int i=;i<=n;i++)f[i]*=2LL;
while(cin>>n&&n)
{
cout<<f[n]<<endl;
}
}

UVA 10253 Series-Parallel Networks (树形dp)的更多相关文章

  1. UVa 12186 - Another Crisis(树形DP)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  2. UVA - 12186 Another Crisis (树形DP)

    思路:dp[i]表示让上司i签字至少需要多少工人签字.       转移方程:将i的所有节点根据所需工人数量升序排序,设i需要k个下属签字,dp[i] = sum{dp[v]| 0 <= v & ...

  3. UVA - 1218 Perfect Service (树形DP)

    思路:dp[i][0]表示i是服务器:dp[i][1]表示i不是服务器,但它的父节点是服务器:dp[i][2]表示i和他的父亲都不是服务器.       转移方程: d[u][0] += min(d[ ...

  4. UVa 1218 - Perfect Service(树形DP)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  5. UVA 1220 Party at Hali-Bula (树形DP)

    求一棵数的最大独立集结点个数并判断方案是否唯一. dp[i][j]表示以i为根的子树的最大独立集,j的取值为选和不选. 决策: 当选择i时,就不能选择它的子结点. 当不选i时,它的子结点可选可不选. ...

  6. UVa 10859 - Placing Lampposts 树形DP 难度: 2

    题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...

  7. UVA - 1218 Perfect Service(树形dp)

    题目链接:id=36043">UVA - 1218 Perfect Service 题意 有n台电脑.互相以无根树的方式连接,现要将当中一部分电脑作为server,且要求每台电脑必须连 ...

  8. 树形DP UVA 1292 Strategic game

    题目传送门 /* 题解:选择一个点,它相邻的点都当做被选择,问最少选择多少点将所有点都被选择 树形DP:dp[i][0/1]表示当前点选或不选,如果选,相邻的点可选可不选,取最小值 */ /***** ...

  9. uva 1292 树形dp

    UVA 1292 - Strategic game 守卫城市,城市由n个点和n-1条边组成的树,要求在点上安排士兵,守卫与点相连的边.问最少要安排多少士兵. 典型的树形dp.每一个点有两个状态: dp ...

随机推荐

  1. Convert.ToInt32()和int.Parse()的区别

    (1)Convert.ToInt32(null)会返回0而不会报异常,但int.Parse(null)则会产生异常 (2)Convert.ToInt32("")和int.Parse ...

  2. Ruby和Rails开发环境安装

    更新包管理 sudo apt-get update 安装curl sudo apt-get install curl *安装rvm via curl \curl -L https://get.rvm. ...

  3. 手机user agent大全下载 整理发布一批移动设备的user agent【分享】

    手机user agent大全下载 整理发布一批移动设备的user agent[分享] 很多人朋友在玩浏览器的时候 或者写软件的时候需要用到 user agent 这个东西 修改这个 可以使自己的浏览器 ...

  4. python学习视频整理

    python3英文视频教程(全87集) http://pan.baidu.com/s/1dDnGBvV python从入门到精通视频(全60集)链接:http://pan.baidu.com/s/1e ...

  5. Codeforces 518D Ilya and Escalator

    http://codeforces.com/problemset/problem/518/D 题意:n个人,每秒有p的概率进电梯,求t秒后电梯里人数的期望 考虑dp:f[i][j]代表第i秒有j个人的 ...

  6. mysql命令行的基本用法

    基础介绍:1.在linux下使用下列命令,请确认mysql的bin目录是否已经加入到PATH路径中,或者是已经进入到mysql安装路径下的bin目录查看PATHshell> echo $PATH ...

  7. RBL, UBL, Uboot的关系

    RBL, UBL, Uboot的关系 1)RBL=ROM Bootloader,UBL=user Bootloader. 2)RBL为TI固化在芯片ROM中的bootloader,OMAP上电启动过后 ...

  8. 简单实用后台任务执行框架(Struts2+Spring+AJAX前端web界面可以获取进度)

    使用场景: 在平常web开发过程中,有时操作员要做一个后台会运行很长时间的任务(如上传一个大文件到后台处理),而此时前台页面仍需要给用户及时的进度信息反馈,同时还要避免前台页面超时. 框架介绍: 本架 ...

  9. Jquery radio checked

    Jquery radio checked     radio 1. $("input[name='radio_name'][checked]").val(); //选择被选中Rad ...

  10. 简单的Dao设计模式

    简单的DAO设计模式 这两天学习到了DAO(Data Access Object 数据存取对象)设计模式.想谈谈自己的感受,刚开始接触是感觉有点难,觉得自己逻辑理不清,主要是以前学的知识比较零散没有很 ...