D - (例题)欧拉函数性质

Crawling in process... Crawling failed Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu

Submit Status

Description

Bamboo Pole-vault is a massively popular sport in Xzhiland. And Master Phi-shoe is a very popular coach for his success. He needs some bamboos for his students, so he asked his assistant Bi-Shoe to go to the market and buy them. Plenty of Bamboos of all possible integer lengths (yes!) are available in the market. According to Xzhila tradition,

Score of a bamboo = Φ (bamboo's length)

(Xzhilans are really fond of number theory). For your information, Φ (n) = numbers less than n which are relatively prime (having no common divisor other than 1) to n. So, score of a bamboo of length 9 is 6 as 1, 2, 4, 5, 7, 8 are relatively prime to 9.

The assistant Bi-shoe has to buy one bamboo for each student. As a twist, each pole-vault student of Phi-shoe has a lucky number. Bi-shoe wants to buy bamboos such that each of them gets a bamboo with a score greater than or equal to his/her lucky number. Bi-shoe wants to minimize the total amount of money spent for buying the bamboos. One unit of bamboo costs 1 Xukha. Help him.

Input

Input starts with an integer T (≤ 100), denoting the number of test cases.

Each case starts with a line containing an integer n (1 ≤ n ≤ 10000) denoting the number of students of Phi-shoe. The next line contains n space separated integers denoting the lucky numbers for the students. Each lucky number will lie in the range [1, 106].

Output

For each case, print the case number and the minimum possible money spent for buying the bamboos. See the samples for details.

Sample Input

3

5

1 2 3 4 5

6

10 11 12 13 14 15

2

1 1

Sample Output

Case 1: 22 Xukha

Case 2: 88 Xukha

Case 3: 4 Xukha

题目大意:这道题本质上的意思就是给你一个数N,让你寻找最小的k满足&(k)>=N(&指的是欧拉函数)

思路分析:考察了欧拉函数的简单性质,即满足&(k)>=N的最小数为N+1Z之后的第一个素数

代码:

#include<iostream>
#include<cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
const int maxn=1e6+;
int phi[maxn];
int prime[maxn];
bool check[maxn];
int tot;
void make_phi()
{
tot=;
memset(check,true,sizeof(check));
phi[]=;
for(int i=;i<=maxn;i++)
{
if(check[i])
{
prime[tot++]=i;
phi[i]=i-;
}
for(int j=;j<tot&&i*prime[j]<=maxn;j++)
{
check[i*prime[j]]=false;
if(i%prime[j]==)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else prime[i*prime[j]]=phi[i]*(prime[j]-);
}
}
}
int kase;
int main()
{
int T;
make_phi();
scanf("%d",&T);
kase=;
ll num;
while(T--)
{
int n;
scanf("%d",&n);
ll ans=;
while(n--)
{
scanf("%lld",&num);
ll k=num+;
for(ll i=k;;i++)
{
if(check[i])
{
ans+=i;
break;
}
}
}
printf("Case %d: %lld Xukha\n",++kase,ans);
}
}

lightOJ1370 欧拉函数性质的更多相关文章

  1. lightoj1370欧拉函数/素数筛

    这题有两种解法,1是根据欧拉函数性质:素数的欧拉函数值=素数-1(可根据欧拉定义看出)欧拉函数定义:小于x且与x互质的数的个数 #include<map> #include<set& ...

  2. HDU 6390 GuGuFishtion(莫比乌斯反演 + 欧拉函数性质 + 积性函数)题解

    题意: 给定\(n,m,p\),求 \[\sum_{a=1}^n\sum_{b=1}^m\frac{\varphi(ab)}{\varphi(a)\varphi(b)}\mod p \] 思路: 由欧 ...

  3. LightOJ1298 One Theorem, One Year(DP + 欧拉函数性质)

    题目 Source http://www.lightoj.com/volume_showproblem.php?problem=1298 Description A number is Almost- ...

  4. HDU2824【欧拉函数性质】

    思路: 打表. 利用公式. 类似素数打表一样. #include<bits/stdc++.h> using namespace std; const int N=3e6+10; bool ...

  5. HDOJ 1787 GCD Again(欧拉函数)

    GCD Again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  6. Codeforces Round #538 (Div. 2) F 欧拉函数 + 区间修改线段树

    https://codeforces.com/contest/1114/problem/F 欧拉函数 + 区间更新线段树 题意 对一个序列(n<=4e5,a[i]<=300)两种操作: 1 ...

  7. hdu2824 The Euler function(欧拉函数个数)

    版权声明:本文为博主原创文章,未经博主同意不得转载. vasttian https://blog.csdn.net/u012860063/article/details/36426357 题目链接:h ...

  8. LightOJ 1370- Bi-shoe and Phi-shoe (欧拉函数)

    题目大意:一个竹竿长度为p,它的score值就是比p长度小且与且与p互质的数字总数,比如9有1,2,4,5,7,8这六个数那它的score就是6.给你T组数据,每组n个学生,每个学生都有一个幸运数字, ...

  9. 【BZOJ4173】数学 欧拉函数神题

    [BZOJ4173]数学 Description Input 输入文件的第一行输入两个正整数 . Output 如题 Sample Input 5 6 Sample Output 240 HINT N ...

随机推荐

  1. 用jquery向网页添加背景图片 拉伸 模糊 遮罩层 代码

    方法一:手动添加 1.在body内任意位置添加html代码 <div id="web_bg" style=" position:fixed; _position:a ...

  2. C# 读取EXCEL数据

       /// <summary> /// 读取EXCEL数据 /// </summary> /// <param name="Path">< ...

  3. Linux修改时间时区并在Tomcat中生效

    Linux查看当前时间时区linux:~ # datelinux:~ # date –Rlinux:~ # zdump -v /usr/share/zoneinfo/Asia/Beijing ---- ...

  4. HTML标签区别

    一.div和span的区别 div是一个块级元素,可以包含段落,表格等内容,用于放置不同的内容.一般我们在网页通过div来布局定位网页中的每个区块. span是一个内联元素,没有实际意义,它的存在纯粹 ...

  5. C#中类的属性

    1.[StructLayout] 控制类或结构的数据字段在托管内存中的物理布局,即类或结构需要按某种方式排列.如果要将类传递给需要指定布局的非托管代码,则显式控制类布局是重要的. 2.[Marshal ...

  6. C语言初学 求100到200的全部素数

    #include<stdio.h> #include<math.h> int main() { int m,i,k; for(m=101;m<=200;m=m+2) { ...

  7. odoo10会计期间

    从odoo9,会计模块重构之后,去掉了account.fiscalyear 以及 account.period 这两个模型, 但不表示 odoo 从此就没有 "会计年度"和&quo ...

  8. 使用GCD的dispatch_once创建单例

    使用GCD的dispatch_once创建单例 介绍了创建单例的方式,不过后来发现其实在ios 4.0后有更加简单的方式. 就是使用GCD的功能 代码如下: + (instantClass *)sha ...

  9. php 之mysqli简单封装

    1:DBHelper.class.php <?php class DBHelper{ private $mysqli; private static $host='127.0.0.1'; pri ...

  10. 禁用与启用Button点击

    //启用查询按钮 btnFpSelect.setClickable(true); //禁用查询按钮 btnFpSelect.setClickable(false);