D. Bag of mice
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.

Sample test(s)
input
1 3
output
0.500000000
input
5 5
output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins.

概率dp

开始没想明白转移状态方程,一直思考反了。

dp[i][j]表示轮到王妃抓时,袋子中有i只白鼠,j只黑鼠,王妃赢的概率。

共有四种情况:

1.王妃抓到白鼠 dp[i][j] += i / (i + j);

2.王妃抓到黑鼠,王抓到黑鼠,蹦出一只白鼠,则转移到下一个状态dp[i - 1][j - 2], dp[i][j] += j / (i + j) * (j - 1) / (i + j - 1) * i / (i + j - 2) * dp[i - 1][j - 2];

3.王妃抓到黑鼠,王抓到黑鼠,蹦出一只黑鼠,则转移到下一个状态dp[i ][j - 3],   dp[i][j] += j / (i + j) * (j - 1) / (i + j - 1) * (j - 2) / (i + j - 2) * dp[i][j - 3];

4.王妃抓到黑鼠,王抓到白鼠, dp[i][j] += 0.0;

#include <cstdio>
#include <iostream>
#include <sstream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;
#define ll long long
#define _cle(m, a) memset(m, (a), sizeof(m))
#define repu(i, a, b) for(int i = a; i < b; i++)
#define MAXN 1005
#define eps 1e-5
double dp[MAXN][MAXN]; int main()
{
int w, b;
while(~scanf("%d%d", &w, &b))
{
_cle(dp, );
for(int i = ; i <= w; i++) dp[i][] = 1.0;
for(int i = ; i <= b; i++) dp[][i] = 0.0; for(int i = ; i <= w; i++)
for(int j = ; j <= b; j++) {
dp[i][j] += (double)i / (double)(i + j);
if(j > ) dp[i][j] += ((double)j * (double)(j - ) * (double)i) / ((double)(i + j) * (double)(i + j - ) * (double)(i + j - )) * dp[i - ][j - ];
if(j > ) dp[i][j] += ((double)j * (double)(j - ) * (double)(j - )) / ((double)(i + j) * (double)(i + j - ) * (double)(i + j - )) * dp[i][j - ];
}
printf("%.9lf\n", dp[w][b]);
}
return ;
}

Bag of mice(CodeForces 148D )的更多相关文章

  1. CF 148D D Bag of mice (概率dp)

    题目链接 D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  2. CF148D. Bag of mice(概率DP)

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  3. 【CF148D】 Bag of mice (概率DP)

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  4. code forces 148D Bag of mice (概率DP)

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  5. (CodeForces - 5C)Longest Regular Bracket Sequence(dp+栈)(最长连续括号模板)

    (CodeForces - 5C)Longest Regular Bracket Sequence time limit per test:2 seconds memory limit per tes ...

  6. Sorted Adjacent Differences(CodeForces - 1339B)【思维+贪心】

    B - Sorted Adjacent Differences(CodeForces - 1339B) 题目链接 算法 思维+贪心 时间复杂度O(nlogn) 1.这道题的题意主要就是让你对一个数组进 ...

  7. (CodeForces 558C) CodeForces 558C

    题目链接:http://codeforces.com/problemset/problem/558/C 题意:给出n个数,让你通过下面两种操作,把它们转换为同一个数.求最少的操作数. 1.ai = a ...

  8. [题解]Yet Another Subarray Problem-DP 、思维(codeforces 1197D)

    题目链接:https://codeforces.com/problemset/problem/1197/D 题意: 给你一个序列,求一个子序列 a[l]~a[r] 使得该子序列的 sum(l,r)-k ...

  9. 【Codeforces】【图论】【数量】【哈密顿路径】Fake bullions (CodeForces - 804F)

    题意 有n个黑帮(gang),每个黑帮有siz[i]个人,黑帮与黑帮之间有有向边,并形成了一个竞赛完全图(即去除方向后正好为一个无向完全图).在很多年前,有一些人参与了一次大型抢劫,参与抢劫的人都获得 ...

随机推荐

  1. hdu 1086(计算几何入门题——计算线段交点个数)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1086 You can Solve a Geometry Problem too Time Limit: 2 ...

  2. 2016-2017 ACM-ICPC, NEERC, Southern Subregional Contest (Online Mirror, ACM-ICPC Rules, Teams Preferred) 几道简单题的题解

    A. Toda 2 题意:给你n个人,每个人的分数是a[i],每次可以从两个人到五个人的使得分数减一,使得最终的分数相等: 思路:假设答案为m:每个人的分数与答案m的差值为d[i],sum为d[i]的 ...

  3. 个人作业Week 2 ----------代码的规范和代码复审

    1.是否需要有代码规范 从个人理解的角度出发,我认为代码规范还可以细分为代码的风格还有代码的结构设计(就好比排版一类的) 以前在上C语言课程的时候就看到过,老师会在打“{”的时候进行一个换行,但是有些 ...

  4. 漫谈 Greenplum 开源背后的动机

    漫谈 Greenplum 开源背后的动机  Greenplum是一家总部位于美国加利福尼亚州,为全球大型企业用户提供新型企业级数据仓库(EDW).企业级数据云(EDC)和商务智能(BI)提供解决方案和 ...

  5. C++中关于new及内存地址的思考

    OJ题刷多了,每次都是直接分配内存,那么,你还记得怎么动态分配内存吗? ———————————————————————————————————— 我们知道,使用malloc/calloc等分配内存的函 ...

  6. Python学习(14)模块一

    目录 Python 模块 import语句 from ... import 语句 from ... import * 语句 定位模块 PYTHONPATH变量 命名空间和变量 dir()函数. glo ...

  7. HTML5 学习笔记--------》HTML5概要与新增标签!

      一.HTML5概要 1.1.为什么需要HTML5 HTML4陈旧不能满足日益发展的互联网需要,特别是移动互联网.为了增强浏览器功能Flash被广泛使用,但安全与稳定堪忧,不适合在移动端使用(耗电. ...

  8. 线程池的原理及实现 (zhuan)

    http://blog.csdn.net/hsuxu/article/details/8985931 ************************************************* ...

  9. SDL1.2到2.0的迁移指南(转)

    里面有些单词不好翻译所以放在开头,以备查验. BLock Image Transfer, a computer graphics operation in which two bitmap patte ...

  10. ORACLE CentOS5.6安装

    1 准备 CentOS 5.6企业版 oracle11g fs 安装.安装环境为vmware虚拟机.另外,本安装文档非常简洁,但关键步骤都指出来了,其他的都是默认选择,遇到不知该如何选择的操作或者问题 ...