D. Bag of mice
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.

Sample test(s)
input
1 3
output
0.500000000
input
5 5
output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins.

概率dp

开始没想明白转移状态方程,一直思考反了。

dp[i][j]表示轮到王妃抓时,袋子中有i只白鼠,j只黑鼠,王妃赢的概率。

共有四种情况:

1.王妃抓到白鼠 dp[i][j] += i / (i + j);

2.王妃抓到黑鼠,王抓到黑鼠,蹦出一只白鼠,则转移到下一个状态dp[i - 1][j - 2], dp[i][j] += j / (i + j) * (j - 1) / (i + j - 1) * i / (i + j - 2) * dp[i - 1][j - 2];

3.王妃抓到黑鼠,王抓到黑鼠,蹦出一只黑鼠,则转移到下一个状态dp[i ][j - 3],   dp[i][j] += j / (i + j) * (j - 1) / (i + j - 1) * (j - 2) / (i + j - 2) * dp[i][j - 3];

4.王妃抓到黑鼠,王抓到白鼠, dp[i][j] += 0.0;

#include <cstdio>
#include <iostream>
#include <sstream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;
#define ll long long
#define _cle(m, a) memset(m, (a), sizeof(m))
#define repu(i, a, b) for(int i = a; i < b; i++)
#define MAXN 1005
#define eps 1e-5
double dp[MAXN][MAXN]; int main()
{
int w, b;
while(~scanf("%d%d", &w, &b))
{
_cle(dp, );
for(int i = ; i <= w; i++) dp[i][] = 1.0;
for(int i = ; i <= b; i++) dp[][i] = 0.0; for(int i = ; i <= w; i++)
for(int j = ; j <= b; j++) {
dp[i][j] += (double)i / (double)(i + j);
if(j > ) dp[i][j] += ((double)j * (double)(j - ) * (double)i) / ((double)(i + j) * (double)(i + j - ) * (double)(i + j - )) * dp[i - ][j - ];
if(j > ) dp[i][j] += ((double)j * (double)(j - ) * (double)(j - )) / ((double)(i + j) * (double)(i + j - ) * (double)(i + j - )) * dp[i][j - ];
}
printf("%.9lf\n", dp[w][b]);
}
return ;
}

Bag of mice(CodeForces 148D )的更多相关文章

  1. CF 148D D Bag of mice (概率dp)

    题目链接 D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  2. CF148D. Bag of mice(概率DP)

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  3. 【CF148D】 Bag of mice (概率DP)

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  4. code forces 148D Bag of mice (概率DP)

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  5. (CodeForces - 5C)Longest Regular Bracket Sequence(dp+栈)(最长连续括号模板)

    (CodeForces - 5C)Longest Regular Bracket Sequence time limit per test:2 seconds memory limit per tes ...

  6. Sorted Adjacent Differences(CodeForces - 1339B)【思维+贪心】

    B - Sorted Adjacent Differences(CodeForces - 1339B) 题目链接 算法 思维+贪心 时间复杂度O(nlogn) 1.这道题的题意主要就是让你对一个数组进 ...

  7. (CodeForces 558C) CodeForces 558C

    题目链接:http://codeforces.com/problemset/problem/558/C 题意:给出n个数,让你通过下面两种操作,把它们转换为同一个数.求最少的操作数. 1.ai = a ...

  8. [题解]Yet Another Subarray Problem-DP 、思维(codeforces 1197D)

    题目链接:https://codeforces.com/problemset/problem/1197/D 题意: 给你一个序列,求一个子序列 a[l]~a[r] 使得该子序列的 sum(l,r)-k ...

  9. 【Codeforces】【图论】【数量】【哈密顿路径】Fake bullions (CodeForces - 804F)

    题意 有n个黑帮(gang),每个黑帮有siz[i]个人,黑帮与黑帮之间有有向边,并形成了一个竞赛完全图(即去除方向后正好为一个无向完全图).在很多年前,有一些人参与了一次大型抢劫,参与抢劫的人都获得 ...

随机推荐

  1. SpringMVC 模拟登陆

    新建BackgroundController类: package cn.bdqn.mvc.controller; import org.springframework.stereotype.Contr ...

  2. [SAP ABAP开发技术总结]几个小问题

    声明:原创作品,转载时请注明文章来自SAP师太技术博客( 博/客/园www.cnblogs.com):www.cnblogs.com/jiangzhengjun,并以超链接形式标明文章原始出处,否则将 ...

  3. CUBRID学习笔记 19 sql语句1

    创建 欢迎转载 ,转载时请保留作者信息.本文版权归本人所有,如有任何问题,请与我联系wang2650@sohu.com . 过错 create table tableName (字段名 字段类型 pr ...

  4. 网站安全扫描工具--Netsparker的使用

    Netsparker是一款安全简单的web应用安全漏电扫描工具.该软件功能非常强大,使用方便.Netsparker与其他综合 性的web应用安全扫描工具相比的一个特点是它能够更好的检测SQL Inje ...

  5. C#:常规属性和自动实现的属性

    根据属性的实现方式,属性可分为自动实现的属性和常规属性. 常规属性需要具体的人为的实现get访问器或者set访问器,而且一般需要有一个字段与之相对应:而自动实现的属性的get和set访问器的实现部分被 ...

  6. 别名alias

    alias #查看已设置的别名 alias  别名='原命令' #暂时设定别名(重启失效):alias ls='ls --color=never' unalias  别名 #删除别名 设置别名永久生效 ...

  7. Python基础学习笔记(五)常用字符串内建函数

    参考资料: 1. <Python基础教程> 2. http://www.runoob.com/python/python-strings.html 3. http://www.liaoxu ...

  8. Zeller公式推导及C#代码示例(待完善)

    Zeller公式用于计算给定日期是星期几. 该方法可以用数论知识进行证明. 假设给定日期Date为Year-Month-Day,求解该日期是星期几的问题实际上就是以之前某个确定星期几的日期作为参考点, ...

  9. 禁止 IOS 系统 数字 变超链 (自动识别为电话号码)

    在测试中发现iPad上的Safari总会把长串数字识别为电话号码,文字变成蓝色,点击还会弹出菜单添加到通讯录. 别的地方倒也罢了,如果在用户名中出现数字(手机注册新浪微博的话用户名就是“手机用户xxx ...

  10. git学习笔记07-冲突了怎么办-那就解决冲突呗

    比如一个人自己创建了分支feature1进行修改提交之后提交,另一个人在master上修改然后提交. master分支和feature1分支各自都分别有新的提交,变成了这样: 这种情况下,Git无法执 ...