D. Bag of mice
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.

Sample test(s)
input
1 3
output
0.500000000
input
5 5
output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so according to the rule the dragon wins.

概率dp

开始没想明白转移状态方程,一直思考反了。

dp[i][j]表示轮到王妃抓时,袋子中有i只白鼠,j只黑鼠,王妃赢的概率。

共有四种情况:

1.王妃抓到白鼠 dp[i][j] += i / (i + j);

2.王妃抓到黑鼠,王抓到黑鼠,蹦出一只白鼠,则转移到下一个状态dp[i - 1][j - 2], dp[i][j] += j / (i + j) * (j - 1) / (i + j - 1) * i / (i + j - 2) * dp[i - 1][j - 2];

3.王妃抓到黑鼠,王抓到黑鼠,蹦出一只黑鼠,则转移到下一个状态dp[i ][j - 3],   dp[i][j] += j / (i + j) * (j - 1) / (i + j - 1) * (j - 2) / (i + j - 2) * dp[i][j - 3];

4.王妃抓到黑鼠,王抓到白鼠, dp[i][j] += 0.0;

#include <cstdio>
#include <iostream>
#include <sstream>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <string>
#include <vector>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <algorithm>
using namespace std;
#define ll long long
#define _cle(m, a) memset(m, (a), sizeof(m))
#define repu(i, a, b) for(int i = a; i < b; i++)
#define MAXN 1005
#define eps 1e-5
double dp[MAXN][MAXN]; int main()
{
int w, b;
while(~scanf("%d%d", &w, &b))
{
_cle(dp, );
for(int i = ; i <= w; i++) dp[i][] = 1.0;
for(int i = ; i <= b; i++) dp[][i] = 0.0; for(int i = ; i <= w; i++)
for(int j = ; j <= b; j++) {
dp[i][j] += (double)i / (double)(i + j);
if(j > ) dp[i][j] += ((double)j * (double)(j - ) * (double)i) / ((double)(i + j) * (double)(i + j - ) * (double)(i + j - )) * dp[i - ][j - ];
if(j > ) dp[i][j] += ((double)j * (double)(j - ) * (double)(j - )) / ((double)(i + j) * (double)(i + j - ) * (double)(i + j - )) * dp[i][j - ];
}
printf("%.9lf\n", dp[w][b]);
}
return ;
}

Bag of mice(CodeForces 148D )的更多相关文章

  1. CF 148D D Bag of mice (概率dp)

    题目链接 D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  2. CF148D. Bag of mice(概率DP)

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  3. 【CF148D】 Bag of mice (概率DP)

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  4. code forces 148D Bag of mice (概率DP)

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  5. (CodeForces - 5C)Longest Regular Bracket Sequence(dp+栈)(最长连续括号模板)

    (CodeForces - 5C)Longest Regular Bracket Sequence time limit per test:2 seconds memory limit per tes ...

  6. Sorted Adjacent Differences(CodeForces - 1339B)【思维+贪心】

    B - Sorted Adjacent Differences(CodeForces - 1339B) 题目链接 算法 思维+贪心 时间复杂度O(nlogn) 1.这道题的题意主要就是让你对一个数组进 ...

  7. (CodeForces 558C) CodeForces 558C

    题目链接:http://codeforces.com/problemset/problem/558/C 题意:给出n个数,让你通过下面两种操作,把它们转换为同一个数.求最少的操作数. 1.ai = a ...

  8. [题解]Yet Another Subarray Problem-DP 、思维(codeforces 1197D)

    题目链接:https://codeforces.com/problemset/problem/1197/D 题意: 给你一个序列,求一个子序列 a[l]~a[r] 使得该子序列的 sum(l,r)-k ...

  9. 【Codeforces】【图论】【数量】【哈密顿路径】Fake bullions (CodeForces - 804F)

    题意 有n个黑帮(gang),每个黑帮有siz[i]个人,黑帮与黑帮之间有有向边,并形成了一个竞赛完全图(即去除方向后正好为一个无向完全图).在很多年前,有一些人参与了一次大型抢劫,参与抢劫的人都获得 ...

随机推荐

  1. hdu 1086(计算几何入门题——计算线段交点个数)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=1086 You can Solve a Geometry Problem too Time Limit: 2 ...

  2. ubuntu1604安装体验

    昨天安装了ubuntu 16 安装成了双系统,这样的速度才能接受. 各种软件支持的都还算不错.除了启动时候原始的气息,启动之后挺稳定的. 最让人开心的是新的unity的设置更加丰富了,可以自动隐藏,更 ...

  3. Quartz.Net 调度框架配置介绍

    在平时的工作中,估计大多数都做过轮询调度的任务,比如定时轮询数据库同步,定时邮件通知等等.大家通过windows计划任务,windows服务等都实现过此类任务,甚至实现过自己的配置定制化的框架.那今天 ...

  4. LTE Module User Documentation(翻译6)——物理误差模型、MIMO模型、天线模型

    LTE用户文档 (如有不当的地方,欢迎指正!) 9 PHY Error Model   物理误差模型包含数据误差模型和下行控制误差模型,两者默认为激活.可以使用 ns-3 属性系统去激活,具体为:   ...

  5. DBCP、C3P0、Proxool 、 BoneCP开源连接池的比《转》

     简介   使用评价  项目主页  DBCP DBCP是一个依赖Jakarta commons-pool对象池机制的数据库连接池.DBCP可以直接的在应用程序用使用 可以设置最大和最小连接,连接等待时 ...

  6. Visual Studio 2012 RC 中RC表示什么意思

    来自:http://zhidao.baidu.com/question/507233956.html Release Candidate 缩写为 RC ,经常用于计算机软件方面,表示软件的候选发布版. ...

  7. 简单RTOS学习(一) uc/os-II 工程模板建立

    随着工业需求以及单片机性能越来越高,单个芯片能够且需要处理的任务也越来越多,使用传统前后台任务模式已经很难满足设计的需求,嵌入式实时操作系统正是在这种背景下发展起来,目前流行的有rt-thread,f ...

  8. js跨域问题的解决

    js提交请求给别的应用实例或者别的服务器,由于同源策略,存在js跨域的情况,我所知道两种处理方式: 1.jquery ajax+jsonp <script type="text/jav ...

  9. OpenGL的gluLookAt观察变换函数详解

    void gluLookAt(GLdouble eyex, GLdouble eyey, GLdouble eyez,                          GLdouble center ...

  10. hiho_1081_最短路径1

    题目 最短路模板题目,纯练习手速. 实现 #include<iostream> #include<string.h> #include<iostream> #inc ...