Cow Ski Area
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 3323   Accepted: 919

Description

Farmer John's cousin, Farmer Ron, who lives in the mountains of Colorado, has recently taught his cows to ski. Unfortunately, his cows are somewhat timid and are afraid to ski among crowds of people at the local resorts, so FR has decided to construct his own private ski area behind his farm.

FR's ski area is a rectangle of width W and length L of 'land
squares' (1 <= W <= 500; 1 <= L <= 500). Each land square
is an integral height H above sea level (0 <= H <= 9,999). Cows
can ski horizontally and vertically between any two adjacent land
squares, but never diagonally. Cows can ski from a higher square to a
lower square but not the other way and they can ski either direction
between two adjacent squares of the same height.

FR wants to build his ski area so that his cows can travel between
any two squares by a combination of skiing (as described above) and ski
lifts. A ski lift can be built between any two squares of the ski area,
regardless of height. Ski lifts are bidirectional. Ski lifts can cross
over each other since they can be built at varying heights above the
ground, and multiple ski lifts can begin or end at the same square.
Since ski lifts are expensive to build, FR wants to minimize the number
of ski lifts he has to build to allow his cows to travel between all
squares of his ski area.

Find the minimum number of ski lifts required to ensure the cows can
travel from any square to any other square via a combination of skiing
and lifts.

Input

* Line 1: Two space-separated integers: W and L

* Lines 2..L+1: L lines, each with W space-separated integers corresponding to the height of each square of land.

Output

*
Line 1: A single integer equal to the minimal number of ski lifts FR
needs to build to ensure that his cows can travel from any square to any
other square via a combination of skiing and ski lifts

Sample Input

9 3
1 1 1 2 2 2 1 1 1
1 2 1 2 3 2 1 2 1
1 1 1 2 2 2 1 1 1

Sample Output

3
SB题,还花了好长时间,不开心,不写题解了。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define inf 0x3f3f3f3f
#define mod 10000
typedef long long ll;
using namespace std;
const int N=;
const int M=;
int s,t,n,m,cnt,tim,top,cut,k;
int head[M],dfn[M],low[M],stack1[M];
int num[M],in[M],out[M],vis[M],w[N][N];
int dis[][]= {,,,,-,,,-};
bool flag=false;
struct man {
int to,nxt;
} edg[M*];
void addedg(int u,int v) {
edg[cnt].to=v;
edg[cnt].nxt=head[u];
head[u]=cnt++;//printf("!!!%d %d\n",u,v);system("pause");
}
void init() {
cnt=;
tim=;
top=cut=k=;
memset(head,-,sizeof head);
memset(dfn,,sizeof dfn);
memset(low,,sizeof low);
memset(stack1,,sizeof stack1);
memset(num,,sizeof num);
memset(in,,sizeof in);
memset(out,,sizeof out);
memset(vis,,sizeof vis);
memset(edg,,sizeof edg);
memset(w,,sizeof w);
}
void Tarjan(int u) {
int v;
low[u] = dfn[u] = ++tim;
stack1[top++] = u;
vis[u] = ;
for(int e = head[u]; e != -; e = edg[e].nxt)
{
v = edg[e].to;
if(!dfn[v])
{
Tarjan(v);
low[u] = min(low[u], low[v]);
}
else if(vis[v])
{
low[u] = min(low[u], dfn[v]);
}
}
if(low[u] == dfn[u])
{
cut++;
do
{
v = stack1[--top];
num[v] = cut;
vis[v] = ;
}while(u != v);
}
}
void build(int i,int j,int d)
{
int xx=i+dis[d][];
int yy=j+dis[d][];
int u=i*m+j,v=xx*m+yy;
if(xx>=&&yy<m&&yy>=&&xx<n){
if(w[i][j]>=w[xx][yy])addedg(u,v);
if(w[i][j]<=w[xx][yy])addedg(v,u);
}
return;
}
int main() {
while(~scanf("%d%d",&m,&n)) {
init();
for(int i=; i<n; i++) {
for(int j=; j<m; j++) {
scanf("%d",&w[i][j]);
}
}
for(int i = ; i < n; i++) {
for(int j = ; j < m; j++) {
for(int d = ; d < ; d++) {
build(i,j,d);
}
}
}
for(int i=; i<n*m; i++)if(!dfn[i])Tarjan(i);
for(int i=; i<n*m; i++) {
for(int j=head[i]; j!=-; j=edg[j].nxt) {
int v=edg[j].to;
if(num[i]!=num[v])out[num[i]]++,in[num[v]]++;
}
}
int father=,son=;
for(int i=; i<=cut; i++) {
if(in[i]==)father++;
if(out[i]==)son++;
}
if(cut==)printf("0\n");
else printf("%d\n",max(father,son));
}
return ;
}

POJ2375 Cow Ski Area (强连通)(缩点)的更多相关文章

  1. POJ 2375 Cow Ski Area (强连通分量)

    题目地址:POJ 2375 对每一个点向与之相邻并h小于该点的点加有向边. 然后强连通缩点.问题就转化成了最少加几条边使得图为强连通图,取入度为0和出度为0的点数的较大者就可以.注意,当强连通分量仅仅 ...

  2. [USACO2004][poj2375]Cow Ski Area(在特殊图上用floodfill代替强联通算法)

    http://poj.org/problem?id=2375 题意:一个500*500的矩形,每个格子都有一个高度,不能从高度低的格子滑到高度高的格子(但相等高度可以滑),已知可以在2个相邻格子上加桥 ...

  3. POJ 2375 Cow Ski Area(强连通)

    POJ 2375 Cow Ski Area id=2375" target="_blank" style="">题目链接 题意:给定一个滑雪场, ...

  4. POJ 2375 Cow Ski Area

    Cow Ski Area Time Limit: 1000ms Memory Limit: 65536KB This problem will be judged on PKU. Original I ...

  5. D - Cow Ski Area

    Description Farmer John's cousin, Farmer Ron, who lives in the mountains of Colorado, has recently t ...

  6. poj 2375 Cow Ski Area bfs

    这个题目用tarjan找联通块,缩点,然后统计出入度为0的点理论上是可行的,但问题是会暴栈.考虑到这个题目的特殊性,可以直接用一次bfs找到数字相同且联通的块,这就是一个联通块,然后缩点,统计出入度即 ...

  7. POJ 2375 Cow Ski Area【tarjan】

    题目大意:一个W*L的山,每个山有个高度,当且仅当一个山不比它相邻(有公共边的格子)的山矮时能够滑过去,现在可以装化学电梯来无视山的高度滑雪,问最少装多少电梯使得任意两点都可到达 思路:最后一句话已经 ...

  8. POJ 2375 Cow Ski Area[连通分量]

    题目链接:http://poj.org/problem?id=2375题目大意:一片滑雪场,奶牛只能向相邻的并且不高于他当前高度的地方走.想加上缆车是的奶牛能从低的地方走向高的地方,求最少加的缆车数, ...

  9. BZOJ1051 [HAOI2006]受欢迎的牛 Tarjan 强连通缩点

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1051 题意概括 有n只牛,有m个羡慕关系. 羡慕关系具有传递性. 如果A羡慕B,B羡慕C,那么我们 ...

随机推荐

  1. HTTP状态代码

    1xx(临时响应)表示临时响应并需要请求者继续执行操作的状态代码. 100 (继续) 请求者应当继续提出请求. 服务器返回此代码表示已收到请求的第一部分,正在等待其余部分. 101 (切换协议) 请求 ...

  2. linux exec用法总结

    Linux中exec的用法总结 先总结一个表: exec命令 作用 exec ls 在shell中执行ls,ls结果显示结束后不返回原来的的目录中,而是/(根目录) exec <file 将fi ...

  3. JS 代理模式

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  4. hdu 2058

    PS:TLE了N次...虽然结果对了...后来看了公式才知道要枚举项数才行... 代码: #include "stdio.h"#include "math.h" ...

  5. linux下的文件权限管理

    权限管理有两个层面 第一层区分用户:文件属主(u), 组用户(g), 其它(o) 第二层区分权限:读(r),写(w),可执行(x) 这两个层次构成文件权限管理的二维结构 u         g     ...

  6. Chapter 4: Tomcat Default Connector

    一.概述 第三章介绍的connector是一个很好的学习工具,但是我们还可以做的更多.这一章介绍的是Tomcat4默认的connector. 一个Tomcat的connector是一个独立的模块,能够 ...

  7. 超级链接a+ confirm用法

    示例: <a href="DelServlet?action=${fuwa.id}" onClick="return confirm('你确定要删除?')" ...

  8. 事件委托 EventHandler

    事件就是当对象或类状态发生改变时,对象或类发出的信息或通知.发出信息的对象或类称为"事件源",对事件进行处理的方法称为"接收者",通常事件源在发出状态改变信息时 ...

  9. NSAttributedString的用法

    标签: 以前看到这种字号和颜色不一样的字符串,想出个讨巧的办法就是“¥150”一个UILable,“元/位”一个UILable.今天翻看以前的工程,command点进UITextField中看到[at ...

  10. My_Python的常用函数.

    范围生成函数 class range(object) | range(stop) -> range object | range(start, stop[, step]) -> range ...