awesome-very-deep-learning is a curated list for papers and code about implementing and training very deep neural networks.

Deep Residual Learning

Deep Residual Networks are a family of extremely deep architectures (up to 1000 layers) showing compelling accuracy and nice convergence behaviors. Instead of learning a new representation at each layer, deep residual networks use identity mappings to learn residuals.

Papers

Implementations

  1. Torch by Facebook AI Research (FAIR), with training code in Torch and pre-trained ResNet-18/34/50/101 models for ImageNet: blogcode
  2. Torch, CIFAR-10, with ResNet-20 to ResNet-110, training code, and curves: code
  3. Lasagne, CIFAR-10, with ResNet-32 and ResNet-56 and training code: code
  4. Neon, CIFAR-10, with pre-trained ResNet-32 to ResNet-110 models, training code, and curves: code
  5. Neon, Preactivation layer implementation: code
  6. Torch, MNIST, 100 layers: blogcode
  7. A winning entry in Kaggle's right whale recognition challenge: blogcode
  8. Neon, Place2 (mini), 40 layers: blogcode
  9. Tensorflow with tflearn, with CIFAR-10 and MNIST: code
  10. Tensorflow with skflow, with MNIST: code
  11. Stochastic dropout in Keras: code
  12. ResNet in Chainer: code
  13. Stochastic dropout in Chainer: code
  14. Wide Residual Networks in Keras: code
  15. ResNet in TensorFlow 0.9+ with pretrained caffe weights: code

In addition, this code by Ryan Dahl helps to convert the pre-trained models to TensorFlow.

Highway Networks

Highway Networks take inspiration from Long Short Term Memory (LSTM) and allow training of deep, efficient networks (with hundreds of layers) with conventional gradient-based methods

Papers

Implementations

  1. Lasagne: code
  2. Caffe: code
  3. Torch: code
  4. Tensorflow: blogcode

Very Deep Learning Theory

Theories in very deep learning concentrate on the ideas that very deep networks with skip connections are able to efficiently approximate recurrent computations (similar to the recurrent connections in the visual cortex) or are actually exponential ensembles of shallow networks

Papers

awesome-very-deep-learning的更多相关文章

  1. Deep learning:五十一(CNN的反向求导及练习)

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  2. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  3. 《Neural Network and Deep Learning》_chapter4

    <Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...

  4. Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

    http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...

  5. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  6. Deep Learning 26:读论文“Maxout Networks”——ICML 2013

    论文Maxout Networks实际上非常简单,只是发现一种新的激活函数(叫maxout)而已,跟relu有点类似,relu使用的max(x,0)是对每个通道的特征图的每一个单元执行的与0比较最大化 ...

  7. Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”

    理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...

  8. Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)

    理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...

  9. 0.读书笔记之The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...

  10. #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

    CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...

随机推荐

  1. Swift 实现下拉刷新 JxbRefresh

    JxbRefresh 是采用Swift 实现的 iOS 下拉刷新. 正常下拉刷新: 1 2 3 4 5 self.taleView.addPullRefresh({ [weak self] in    ...

  2. 第八章 标准IO库

    1.IO对象时不可复制或者赋值的:也就是说形参或者返回类型也不能为流类型.如果非要传递或者返回IO对象的的话,则必须传递或者返回指向对象的指针或者引用.如:  ofstream &print( ...

  3. 用php 查询显示新闻消息

    创建数据库: create database mydb ; use mydb ; create table News ( ids int identity primary key, title var ...

  4. URAL 1306 Sequence Median(优先队列)

    题意:求一串数字里的中位数.内存为1M.每个数范围是0到2的31次方-1. 思路:很容易想到把数字全部读入,然后排序,但是会超内存.用计数排序但是数又太大.由于我们只需要第n/2.n/2+1大(n为偶 ...

  5. java读取大容量excel之二(空格、空值问题)

    最近在项目中发现,对于Excel2007(底层根本是xml) ,使用<java读取大容量excel之一>中的方式读取,若待读取的excel2007文件中某一列是空值,(注意,所谓的空值是什 ...

  6. (function($){...})(jQuery) 含义

    最近在项目js文件末端中发现这样的代码,对于前端技术比较薄弱的我,着实还是有点晕,好在查阅到了相关资料,现解释如下: (function($){  $.plugin = new org.plugin. ...

  7. hdu 2061

    PS:  以为找个简单来恢复信心..结果碰到那么傻逼的题目... 题意:给出学分和成绩,算GPA...关键是注意换行....它要求的换行我觉得超级奇怪...除了第一个正常,其他的输入完之后先一个换行. ...

  8. HDOJ-三部曲-1015-The Cow Lexicon

    The Cow Lexicon Time Limit : 4000/2000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) To ...

  9. swift 闭包+嵌套函数+extension+单例+嵌套函数+??

    //: Playground - noun: a place where people can play import UIKit //*******************嵌套函数********* ...

  10. 多个storyboard开发应用程序,封装.bundle和.a不用xib使用storyboard!!!

    一,封装.bundle和.a使用xib的方式前面已经说过了,具体方式不再赘述,简单介绍于下: 静态库加.h  bundle:删plist,改sdk,加xib 简称psx三步 引用库的项目,加.a .b ...