awesome-very-deep-learning is a curated list for papers and code about implementing and training very deep neural networks.

Deep Residual Learning

Deep Residual Networks are a family of extremely deep architectures (up to 1000 layers) showing compelling accuracy and nice convergence behaviors. Instead of learning a new representation at each layer, deep residual networks use identity mappings to learn residuals.

Papers

Implementations

  1. Torch by Facebook AI Research (FAIR), with training code in Torch and pre-trained ResNet-18/34/50/101 models for ImageNet: blogcode
  2. Torch, CIFAR-10, with ResNet-20 to ResNet-110, training code, and curves: code
  3. Lasagne, CIFAR-10, with ResNet-32 and ResNet-56 and training code: code
  4. Neon, CIFAR-10, with pre-trained ResNet-32 to ResNet-110 models, training code, and curves: code
  5. Neon, Preactivation layer implementation: code
  6. Torch, MNIST, 100 layers: blogcode
  7. A winning entry in Kaggle's right whale recognition challenge: blogcode
  8. Neon, Place2 (mini), 40 layers: blogcode
  9. Tensorflow with tflearn, with CIFAR-10 and MNIST: code
  10. Tensorflow with skflow, with MNIST: code
  11. Stochastic dropout in Keras: code
  12. ResNet in Chainer: code
  13. Stochastic dropout in Chainer: code
  14. Wide Residual Networks in Keras: code
  15. ResNet in TensorFlow 0.9+ with pretrained caffe weights: code

In addition, this code by Ryan Dahl helps to convert the pre-trained models to TensorFlow.

Highway Networks

Highway Networks take inspiration from Long Short Term Memory (LSTM) and allow training of deep, efficient networks (with hundreds of layers) with conventional gradient-based methods

Papers

Implementations

  1. Lasagne: code
  2. Caffe: code
  3. Torch: code
  4. Tensorflow: blogcode

Very Deep Learning Theory

Theories in very deep learning concentrate on the ideas that very deep networks with skip connections are able to efficiently approximate recurrent computations (similar to the recurrent connections in the visual cortex) or are actually exponential ensembles of shallow networks

Papers

awesome-very-deep-learning的更多相关文章

  1. Deep learning:五十一(CNN的反向求导及练习)

    前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...

  2. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  3. 《Neural Network and Deep Learning》_chapter4

    <Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...

  4. Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN

    http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...

  5. paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

    来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...

  6. Deep Learning 26:读论文“Maxout Networks”——ICML 2013

    论文Maxout Networks实际上非常简单,只是发现一种新的激活函数(叫maxout)而已,跟relu有点类似,relu使用的max(x,0)是对每个通道的特征图的每一个单元执行的与0比较最大化 ...

  7. Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”

    理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...

  8. Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)

    理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...

  9. 0.读书笔记之The major advancements in Deep Learning in 2016

    The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...

  10. #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

    CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...

随机推荐

  1. iphone获取当前流量信息

    通过读取系统网络接口信息,获取当前iphone设备的流量相关信息,统计的是上次开机至今的流量信息. 代码 悦德财富:https://yuedecaifu.com 1 2 3 4 5 6 7 8 9 1 ...

  2. JS原生回到顶部效果

    // 回到顶部 onload = function () { var oBtnTop = document.getElementById('toTop'); var timer = null; oBt ...

  3. Http请求与响应格式

    原文:http://www.cnblogs.com/z941030/p/4699779.html Http协议对浏览器发出的Request格式以及对Web服务器发出的Response格式有具体的规定. ...

  4. Nearest number - 2_暴力&&bfs

    Description Input is the matrix A of N by N non-negative integers. A distance between two elements A ...

  5. XML文件的读取、序列化和反序列化操作

    public class XmlHelper { //从xml中获取MsgType public static string XMLSelect(string XML) { XmlDocument x ...

  6. Unity3D ShaderLab 自定义光照模型

    接着上一篇BasicMyDiffuse的代码来说,这次要说明的就是自定义的光照模型,Ctrl+D>BasicMyDiffuse. 1.>//#pragma surface surf Lam ...

  7. 2012开源项目计划-WPF企业级应用整合平台

    2012开源项目计划-WPF企业级应用整合平台 开篇 2012年,提前祝大家新年快乐,为了加快2012年的开发计划,特打算年前和大家分享一下2012年的开发计划和年后具体的实施计划,希望有兴趣或者有志 ...

  8. linxu fcntl 函数用法 【转】

    功能描述:根据文件描述词来操作文件的特性. 文件控制函数         fcntl -- file control 头文件: #include <fcntl.h>;          i ...

  9. busybox inetd tftpd

    /*************************************************************************** * busybox inetd tftpd * ...

  10. Maven打包可执行Jar包方式

    第一步:pom.xm中的build标签下加入maven插件配置,打包生成可执行jar包方式Maven中的打包方式更换为 <packaging>jar</packaging> b ...