awesome-very-deep-learning
awesome-very-deep-learning is a curated list for papers and code about implementing and training very deep neural networks.
Deep Residual Learning
Deep Residual Networks are a family of extremely deep architectures (up to 1000 layers) showing compelling accuracy and nice convergence behaviors. Instead of learning a new representation at each layer, deep residual networks use identity mappings to learn residuals.
Papers
- Wide Residual Networks (2016) [orginal code], studies wide residual neural networks and shows that making residual blocks wider outperforms deeper and thinner network architectures
- Swapout: Learning an ensemble of deep architectures (2016), improving accuracy by randomly applying dropout, skipforward and residual units per layer
- Deep Networks with Stochastic Depth (2016) [original code], dropout with residual layers as regularizer
- Identity Mappings in Deep Residual Networks (2016) [original code], improving the original proposed residual units by reordering batchnorm and activation layers
- Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning (2016), inception network with residual connections
- Deep Residual Learning for Image Recognition (2015) [original code], original paper introducing residual neural networks
Implementations
- Torch by Facebook AI Research (FAIR), with training code in Torch and pre-trained ResNet-18/34/50/101 models for ImageNet: blog, code
- Torch, CIFAR-10, with ResNet-20 to ResNet-110, training code, and curves: code
- Lasagne, CIFAR-10, with ResNet-32 and ResNet-56 and training code: code
- Neon, CIFAR-10, with pre-trained ResNet-32 to ResNet-110 models, training code, and curves: code
- Neon, Preactivation layer implementation: code
- Torch, MNIST, 100 layers: blog, code
- A winning entry in Kaggle's right whale recognition challenge: blog, code
- Neon, Place2 (mini), 40 layers: blog, code
- Tensorflow with tflearn, with CIFAR-10 and MNIST: code
- Tensorflow with skflow, with MNIST: code
- Stochastic dropout in Keras: code
- ResNet in Chainer: code
- Stochastic dropout in Chainer: code
- Wide Residual Networks in Keras: code
- ResNet in TensorFlow 0.9+ with pretrained caffe weights: code
In addition, this code by Ryan Dahl helps to convert the pre-trained models to TensorFlow.
Highway Networks
Highway Networks take inspiration from Long Short Term Memory (LSTM) and allow training of deep, efficient networks (with hundreds of layers) with conventional gradient-based methods
Papers
- Training Very Deep Networks (2015), introducing highway neural networks
Implementations
Very Deep Learning Theory
Theories in very deep learning concentrate on the ideas that very deep networks with skip connections are able to efficiently approximate recurrent computations (similar to the recurrent connections in the visual cortex) or are actually exponential ensembles of shallow networks
Papers
- Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex, shows that ResNets with shared weights work well too although having fewer parameters
- Residual Networks are Exponential Ensembles of Relatively Shallow Networks, shows that ResNets behaves just like ensembles of shallow networks in test time. This suggests that in addition to describing neural networks in terms of width and depth, there is a third dimension: multiplicity, the size of the implicit ensemble
awesome-very-deep-learning的更多相关文章
- Deep learning:五十一(CNN的反向求导及练习)
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
- 《Neural Network and Deep Learning》_chapter4
<Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...
- Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...
- paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...
- Deep Learning 26:读论文“Maxout Networks”——ICML 2013
论文Maxout Networks实际上非常简单,只是发现一种新的激活函数(叫maxout)而已,跟relu有点类似,relu使用的max(x,0)是对每个通道的特征图的每一个单元执行的与0比较最大化 ...
- Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”
理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...
- Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)
理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...
- 0.读书笔记之The major advancements in Deep Learning in 2016
The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...
- #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...
随机推荐
- dom添加事件
1.语法:document.getElementById('btn').addEventListener 2.可以添加多个EventListener,且不会覆盖 3.移除EventListener, ...
- yum源的更新问题
我们知道在linux下安装软件的方法有多种多样,其中利用yum的方式来安装较为简单,但需要等待的时间比较长.下面介绍一下如何更新yum的源的问题. 首先需要保证的是linux的机器能上网.然后按照下面 ...
- log4j之NDC、MDC
NDC 介绍 NDC(Nested Diagnostic Context)是 Neil Harrison 在名为<Patterns for Logging Diagnostic Message ...
- Linux学习之CentOS--FTP服务原理及vsfptd的安装、配置
本篇随笔将讲解FTP服务的原理以及vsfptd这个最常用的FTP服务程序的安装与配置... 一.FTP服务原理 FTP(File Transfer Protocol)是一个非常古老并且应用十分广泛的文 ...
- 通过 itms-services 协议,发布或者分享 iOS 应用程序
导读:itms-services 协议常用于 iOS 企业应用的无线部署,这可在不使用 iTunes 的情况下将内部软件发布或者分享给用户. 一.前期准备资料: 1.应用程序 (.ipa) 文件(使用 ...
- Get Many Persimmon Trees_枚举&&二维树状数组
Description Seiji Hayashi had been a professor of the Nisshinkan Samurai School in the domain of Aiz ...
- 三色二叉树_树形DP
Time Limit: 1000 mSec Memory Limit : 32768 KB Problem Description 一棵二叉树可以按照如下规则表示成一个由0.1.2组成的字符序 ...
- HDU 5086
http://acm.hdu.edu.cn/showproblem.php?pid=5086 求所有连续区间的数字和 本质是一个乘法原理,当前位置的数字出现次数=这个数之前的数字个数*这个数之后的数字 ...
- Magento控制器
提到模型-视图-控制器这种MVC架构,要追溯到Smalltalk编程语言和Xerox Parc.从那个时候开始,就有许多系统将自己描述为MVC架构.这些系统虽然在某些地方有细微差别,但都实现了数据层, ...
- 打开office弹出steup error 的解决办法
找到 C:\Program Files\Common Files\Microsoft Shared\OFFICE12\Office Setup Controller 将这个文件夹删除