awesome-very-deep-learning
awesome-very-deep-learning is a curated list for papers and code about implementing and training very deep neural networks.
Deep Residual Learning
Deep Residual Networks are a family of extremely deep architectures (up to 1000 layers) showing compelling accuracy and nice convergence behaviors. Instead of learning a new representation at each layer, deep residual networks use identity mappings to learn residuals.
Papers
- Wide Residual Networks (2016) [orginal code], studies wide residual neural networks and shows that making residual blocks wider outperforms deeper and thinner network architectures
- Swapout: Learning an ensemble of deep architectures (2016), improving accuracy by randomly applying dropout, skipforward and residual units per layer
- Deep Networks with Stochastic Depth (2016) [original code], dropout with residual layers as regularizer
- Identity Mappings in Deep Residual Networks (2016) [original code], improving the original proposed residual units by reordering batchnorm and activation layers
- Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning (2016), inception network with residual connections
- Deep Residual Learning for Image Recognition (2015) [original code], original paper introducing residual neural networks
Implementations
- Torch by Facebook AI Research (FAIR), with training code in Torch and pre-trained ResNet-18/34/50/101 models for ImageNet: blog, code
- Torch, CIFAR-10, with ResNet-20 to ResNet-110, training code, and curves: code
- Lasagne, CIFAR-10, with ResNet-32 and ResNet-56 and training code: code
- Neon, CIFAR-10, with pre-trained ResNet-32 to ResNet-110 models, training code, and curves: code
- Neon, Preactivation layer implementation: code
- Torch, MNIST, 100 layers: blog, code
- A winning entry in Kaggle's right whale recognition challenge: blog, code
- Neon, Place2 (mini), 40 layers: blog, code
- Tensorflow with tflearn, with CIFAR-10 and MNIST: code
- Tensorflow with skflow, with MNIST: code
- Stochastic dropout in Keras: code
- ResNet in Chainer: code
- Stochastic dropout in Chainer: code
- Wide Residual Networks in Keras: code
- ResNet in TensorFlow 0.9+ with pretrained caffe weights: code
In addition, this code by Ryan Dahl helps to convert the pre-trained models to TensorFlow.
Highway Networks
Highway Networks take inspiration from Long Short Term Memory (LSTM) and allow training of deep, efficient networks (with hundreds of layers) with conventional gradient-based methods
Papers
- Training Very Deep Networks (2015), introducing highway neural networks
Implementations
Very Deep Learning Theory
Theories in very deep learning concentrate on the ideas that very deep networks with skip connections are able to efficiently approximate recurrent computations (similar to the recurrent connections in the visual cortex) or are actually exponential ensembles of shallow networks
Papers
- Bridging the Gaps Between Residual Learning, Recurrent Neural Networks and Visual Cortex, shows that ResNets with shared weights work well too although having fewer parameters
- Residual Networks are Exponential Ensembles of Relatively Shallow Networks, shows that ResNets behaves just like ensembles of shallow networks in test time. This suggests that in addition to describing neural networks in terms of width and depth, there is a third dimension: multiplicity, the size of the implicit ensemble
awesome-very-deep-learning的更多相关文章
- Deep learning:五十一(CNN的反向求导及练习)
前言: CNN作为DL中最成功的模型之一,有必要对其更进一步研究它.虽然在前面的博文Stacked CNN简单介绍中有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好.而本文 ...
- 【深度学习Deep Learning】资料大全
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books by Yoshua Bengio, Ian Goodfellow and Aaron C ...
- 《Neural Network and Deep Learning》_chapter4
<Neural Network and Deep Learning>_chapter4: A visual proof that neural nets can compute any f ...
- Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep le ...
- paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio c ...
- Deep Learning 26:读论文“Maxout Networks”——ICML 2013
论文Maxout Networks实际上非常简单,只是发现一种新的激活函数(叫maxout)而已,跟relu有点类似,relu使用的max(x,0)是对每个通道的特征图的每一个单元执行的与0比较最大化 ...
- Deep Learning 23:dropout理解_之读论文“Improving neural networks by preventing co-adaptation of feature detectors”
理论知识:Deep learning:四十一(Dropout简单理解).深度学习(二十二)Dropout浅层理解与实现.“Improving neural networks by preventing ...
- Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)
理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现.Deep lear ...
- 0.读书笔记之The major advancements in Deep Learning in 2016
The major advancements in Deep Learning in 2016 地址:https://tryolabs.com/blog/2016/12/06/major-advanc ...
- #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...
随机推荐
- Embedded binary is not signed with the same certificate as the parent app
I face the same issue too,I solve it by this: First, I reCreate my team develop certificate(Because ...
- android 经典下雨效果
英文原文地址:https://blog.stylingandroid.com/snowfall/ 中文翻译地址:http://www.open-open.com/lib/view/open145226 ...
- NSString的几种常用方法
NSString的几种常用方法 要把 “2011-11-29” 改写成 “2011/11/29”一开始想用ios的时间格式,后来用NSString的方法搞定. [string stringByRe ...
- nslayoutConstraint
1.vfl的正确编写格式 NSDictionary *dict1 = NSDictionaryOfVariableBindings(_boxV,_headerL,_imageV,_backBtn,_d ...
- SecureCRT下的串口无法输入
用串口配置交换机的时候,出现的问题: 用secureCRT建了一个串口COM1后,连接上开发板后,可以正确接受和显示串口的输出,但是按键输入无效. 解决方法: Session Options -> ...
- MouseJack:利用15美元的工具和15行代码控制无线鼠标和键盘
Bastille的研究团队发现了一种针对蓝牙键盘鼠标的攻击,攻击者可以利用漏洞控制你的电脑操作.研究团队将此攻击命名为MouseJack. 七大厂商皆中招 软件工程师马克纽林说:“利用假冒的无线电脑鼠 ...
- Unix command 积累
UNIX is a multi-user multitasking-optimized operating system that can run on various hardware platfo ...
- Alice and Bob(不断补充)
我之前做过一些博弈的题目,以为博弈都是DP,结果被坑了很多次,其实博弈有很多种,在此,把我见过的类型都搬上来. 1,HDU3951(找规律) 题意:把n枚硬币围成一个圆,让Alice和Bob两个人分别 ...
- LCA(RMQ)
; xh=; ..lx*] of longint; lt,dfn,fr,dep:..lx] of longint; f:..lx*,..xh] of longint; vis:..lx] of boo ...
- 数据库 SQL优化
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...