题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4609

题意:n个数,问取三个数可以构成三角形的组合数。

FFT预处理出两个数的组合情况,然后枚举第三个数,计数去重。

 #include <bits/stdc++.h>
using namespace std; const double PI = acos(-1.0);
//复数结构体
typedef struct Complex {
double r,i;
Complex(double _r = 0.0,double _i = 0.0) {
r = _r; i = _i;
}
Complex operator +(const Complex &b) {
return Complex(r+b.r,i+b.i);
}
Complex operator -(const Complex &b) {
return Complex(r-b.r,i-b.i);
}
Complex operator *(const Complex &b) {
return Complex(r*b.r-i*b.i,r*b.i+i*b.r);
}
}Complex;
/*
* 进行FFT和IFFT前的反转变换。
* 位置i和 (i二进制反转后位置)互换
* len必须是2的幂
*/
void change(Complex y[],int len) {
int i,j,k;
for(i = , j = len/;i < len-; i++) {
if(i < j)swap(y[i],y[j]);
//交换互为小标反转的元素,i<j保证交换一次
//i做正常的+1,j左反转类型的+1,始终保持i和j是反转的
k = len/;
while( j >= k) {
j -= k;
k /= ;
}
if(j < k) j += k;
}
}
/*
* 做FFT
* len必须为2^k形式,
* on==1时是DFT,on==-1时是IDFT
*/
void fft(Complex y[],int len,int on) {
change(y,len);
for(int h = ; h <= len; h <<= ) {
Complex wn(cos(-on**PI/h),sin(-on**PI/h));
for(int j = ;j < len;j+=h) {
Complex w(,);
for(int k = j;k < j+h/;k++) {
Complex u = y[k];
Complex t = w*y[k+h/];
y[k] = u+t;
y[k+h/] = u-t;
w = w*wn;
}
}
}
if(on == -) {
for(int i = ;i < len;i++) {
y[i].r /= len;
}
}
} typedef long long LL;
const int maxn = ;
Complex x1[maxn];
int a[maxn/];
LL num[maxn], s[maxn];
int n, len, q; int main() {
// freopen("in", "r", stdin);
int T;
scanf("%d", &T);
while(T--) {
scanf("%d",&n);
memset(a, , sizeof(a));
memset(s, , sizeof(s));
memset(num, , sizeof(num));
int maxx = ;
for(int i = ; i < n; i++) {
scanf("%I64d", &a[i]);
num[a[i]]++;
maxx = max(maxx, a[i]);
}
int len1 = maxx + ;
len = ;
while(len < len1 * ) len <<= ;
for(int i = ; i < len; i++) x1[i] = Complex(, );
for(int i = ; i < len1; i++) x1[i] = Complex(num[i], );
fft(x1, len, );
for(int i = ; i < len; i++) x1[i] = x1[i] * x1[i];
fft(x1, len, -);
for(int i = ; i < len; i++) num[i] = (LL)(x1[i].r + 0.5);
len = * maxx;
for(int i = ; i < n; i++) num[a[i]*]--;
for(int i = ; i <= len; i++) num[i] /= ;
for(int i = ; i <= len; i++) s[i] = s[i-] + num[i];
LL ret = ;
for(int i = ; i < n; i++) {
ret += s[len] - s[a[i]];
ret -= (LL)(n - i - ) * i;
ret -= (n - );
ret -= (LL)(n - i - ) * (n - i - ) / ;
}
LL sum = (LL)n * (n - ) * (n - ) / ;
// cout << (double)ret/(double)((n*(n-1)*(n-2))/6) << endl;
printf("%.7lf\n", (double)ret/sum);
}
return ;
}

[HDOJ4609]3-idiots(FFT,计数)的更多相关文章

  1. bzoj 3513: [MUTC2013]idiots FFT

    bzoj 3513: [MUTC2013]idiots FFT 链接 bzoj 思路 参考了学姐TRTTG的题解 统计合法方案,最后除以总方案. 合法方案要不好统计,统计不合法方案. \(a+b< ...

  2. bzoj 3513 [MUTC2013]idiots FFT 生成函数

    [MUTC2013]idiots Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 806  Solved: 265[Submit][Status][Di ...

  3. BZOJ3513[MUTC2013]idiots——FFT+生成函数

    题目描述 给定n个长度分别为a_i的木棒,问随机选择3个木棒能够拼成三角形的概率. 输入 第一行T(T<=100),表示数据组数. 接下来若干行描述T组数据,每组数据第一行是n,接下来一行有n个 ...

  4. [MUTC2013][bzoj3513] idiots [FFT]

    题面 传送门 思路 首先有一个容斥原理的结论:可以组成三角形的三元组数量=所有三元组-不能组成三角形的三元组 也就是说我们只要求出所有不能组成三角形的三元组即可 我们考虑三元组(a,b,c),a< ...

  5. [UVA 12633] Super Rooks on Chessboard FFT+计数

    如果只有行和列的覆盖,那么可以直接做,但现在有左上到右下的覆盖. 考虑对行和列的覆盖情况做一个卷积,然后就有了x+y的非覆盖格子数. 然后用骑士的左上到右下的覆盖特判掉那些x+y的格子就可以了. 注意 ...

  6. [HDU4609] 3-idiots FFT+计数

    用FFT再去重计算出两条边加起来为某个值得方案数,然后用总方案数减去不合法方案数即可. #include<iostream> #include<cstdio> #include ...

  7. 【bzoj3513】[MUTC2013]idiots FFT

    题目描述 给定n个长度分别为a_i的木棒,问随机选择3个木棒能够拼成三角形的概率. 输入 第一行T(T<=100),表示数据组数. 接下来若干行描述T组数据,每组数据第一行是n,接下来一行有n个 ...

  8. ACM第一阶段学习内容

    一.知识目录 字符串处理 ................................................................. 3 1.KMP 算法 .......... ...

  9. [loj6051]PATH

    (不妨将下标改为从1开始) 参考loj2265中关于杨表的相关知识 构造一个$n$行且第$i$行有$a_{i}$个格子的杨表,依次记录其每一次增加的时间(范围为$[1,\sum_{i=1}^{n}a_ ...

随机推荐

  1. Python for z/OS

    Install pythondev Install DB2 or server driver package easy_install ibm_db Get license file from tor ...

  2. jquery ui和jquery easy ui的区别

    jquery ui 是jquery开发团队 开发,适用于网站式的页面.jquery easyui 是第三方基于jquery开发,适用于应用程序式的页面. 两者的方法调用也略有不同:jquery ui ...

  3. SessionHelper

    MXS&Vincene  ─╄OvЁ  &0000009 ─╄OvЁ  MXS&Vincene MXS&Vincene  ─╄OvЁ:今天很残酷,明天更残酷,后天很美好 ...

  4. dubbo 学习

    1. dubbo Can not lock the registry cache file: 当本地同时启动服务端和客户端的时候就可能产生这个问题. 解决方案 Dubbo通过注册中心发现服务,发现的服 ...

  5. ORACLE添加表约束的语法示例

    转自:http://jingyan.baidu.com/article/f54ae2fccda68d1e93b84942.html 示例: --班级表 CREATE TABLE TCLASS( cl_ ...

  6. CGRectGet系列

    CGRectGetHeight返回label本身的高度 CGRectGetMinY返回label顶部的坐标 CGRectGetMaxY 返回label底部的坐标 CGRectGetMinX 返回lab ...

  7. 霸气的jQ插件

    http://codepen.io/ canvas的各种实例 1.The Responsive jQuery Content Slider http://bxslider.com/ 2.ThemePu ...

  8. 【转】java URLConnection从网上下载图片或音乐

    try { //根据String形式创建一个URL对象,   URL url = new URL("http://www.baidu.com");   //实列一个URLconne ...

  9. 关闭用miniUI打开的窗口

    miniUI打开的窗口用window.close关闭无效, 应该用window.CloseOwnerWindow();

  10. [团队项目]SCRUM项目6.0 7.0 (新)

    6.0----------------------------------------------------- sprint演示 1.坚持所有的sprint都结束于演示. 团队的成果得到认可,会感觉 ...