POJ 2960 博弈论
题目链接:
http://poj.org/problem?id=2960
S-Nim
Time Limit: 2000MS Memory Limit: 65536K
#### 问题描述
> Arthur and his sister Caroll have been playing a game called Nim for some time now. Nim is played as follows:
> The starting position has a number of heaps, all containing some, not necessarily equal, number of beads.
> The players take turns chosing a heap and removing a positive number of beads from it.
> The first player not able to make a move, loses.
> Arthur and Caroll really enjoyed playing this simple game until they
> recently learned an easy way to always be able to find the best move:
> Xor the number of beads in the heaps in the current position (i.e. if we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).
> If the xor-sum is 0, too bad, you will lose.
> Otherwise, move such that the xor-sum becomes 0. This is always possible.
> It is quite easy to convince oneself that this works. Consider these facts:
> The player that takes the last bead wins.
> After the winning player's last move the xor-sum will be 0.
> The xor-sum will change after every move.
> Which means that if you make sure that the xor-sum always is 0 when you have made your move, your opponent will never be able to win, and, thus, you will win.
>
> Understandibly it is no fun to play a game when both players know how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll soon came up with a similar game, S-Nim, that seemed to solve this problem. Each player is now only allowed to remove a number of beads in some predefined set S, e.g. if we have S = {2, 5} each player is only allowed to remove 2 or 5 beads. Now it is not always possible to make the xor-sum 0 and, thus, the strategy above is useless. Or is it?
>
> your job is to write a program that determines if a position of S-Nim is a losing or a winning position. A position is a winning position if there is at least one move to a losing position. A position is a losing position if there are no moves to a losing position. This means, as expected, that a position with no legal moves is a losing position.
输入
Input consists of a number of test cases.
For each test case: The first line contains a number k (0 < k ≤ 100) describing the size of S, followed by k numbers si (0 < si ≤ 10000) describing S. The second line contains a number m (0 < m ≤ 100) describing the number of positions to evaluate. The next m lines each contain a number l (0 < l ≤ 100) describing the number of heaps and l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the heaps.
The last test case is followed by a 0 on a line of its own.
输出
For each position: If the described position is a winning position print a 'W'.If the described position is a losing position print an 'L'.
Print a newline after each test case.
样例
sample input
2 2 5
3
2 5 12
3 2 4 7
4 2 3 7 12
5 1 2 3 4 5
3
2 5 12
3 2 4 7
4 2 3 7 12
0sample output
LWW
WWL
题意
题目是对石子问题的改遍,限制了取石子的个数。
题解
由于数据比较小,我们暴力求出一堆的情况下的SG值,然后每一堆的SG值异或一下就是答案。
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<algorithm>
using namespace std;
const int maxn=111;
const int maxm = 10101;
int st[maxn],sg[maxm];
int vis[maxm];
int n, m;
void get_sg() {
sort(st, st + n);
for (int i = 0; i < st[0]; i++) {
sg[i] = 0;
}
for (int i = st[0]; i < maxm; i++) {
memset(vis, 0, sizeof(vis));
for (int j = 0; j < n; j++) {
if (i - st[j] >= 0) {
vis[sg[i - st[j]]] = 1;
}
}
for (int j = 0;; j++) if (!vis[j]) {
sg[i] = j; break;
}
}
}
int main() {
while (scanf("%d", &n) == 1 && n) {
for (int i = 0; i < n; i++) scanf("%d", &st[i]);
get_sg();
scanf("%d", &m);
string ans;
while (m--) {
int sum = 0;
int cnt; scanf("%d", &cnt);
for (int i = 0; i < cnt; i++) {
int x; scanf("%d", &x);
sum ^= sg[x];
}
if (sum == 0) ans += 'L';
else ans += 'W';
}
printf("%s\n", ans.c_str());
}
return 0;
}
POJ 2960 博弈论的更多相关文章
- poj 2960 S-Nim
S-Nim Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4113 Accepted: 2158 Description ...
- HDU3544 Alice's Game && POJ 2960 S-Nim(SG函数)
题意: 有一块xi*Yi的矩形巧克力,Alice只允许垂直分割巧克力,Bob只允许水平分割巧克力.具体来说,对于Alice,一块巧克力X i * Y i,只能分解成a * Y i和b * Y i其中a ...
- POJ 2960 S-Nim 博弈论 sg函数
http://poj.org/problem?id=2960 sg函数几乎是模板题. 调试代码的最大障碍仍然是手残在循环里打错变量名,是时候换个hydra产的机械臂了[超想要.jpg] #includ ...
- hdu 1536/1944 / POJ 2960 / ZOJ 3084 S-Nim 博弈论
简单的SG函数应用!!! 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> #inclu ...
- POJ 2960 S-Nim<博弈>
链接:http://poj.org/problem?id=2960 #include<stdio.h> #include<string.h> ; ; int SG[N];//S ...
- POJ 2960 S-Nim (sg函数)
题目链接:http://poj.org/problem?id=2960 题目大意:给定数组S,接下来给出m个游戏局面.游戏局面是一些beads堆,先给出堆数,然后是每一堆中beads的数目.游戏规则是 ...
- poj 2960 S-Nim(SG函数)
S-Nim Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 3694 Accepted: 1936 Description ...
- poj 2960 S-Nim【SG函数】
预处理出SG函数,然后像普通nim一样做即可 #include<iostream> #include<cstdio> using namespace std; const in ...
- POJ 2960
也算是一道模板题吧,只需按照SG函数的定义求出每个值的SG,然后异或就可以了. #include <iostream> #include <cstdio> #include & ...
随机推荐
- ios网络:应用一个请求的7个步骤
Splitting big tasks into small tasks is often one of the best ways to solve a problem. Thus, in the ...
- Python生态环境简介[转]
Python生态环境简介 作者: Mir Nazim 原文: Python Ecosystem - An Introduction 译者: dccrazyboy 原译: Python生态环境简介 当 ...
- [leetcode]_Add Two Numbers
题目:两个链表存储数字,然后求和,和值存储在一个链表中. 代码: public ListNode addTwoNumbers(ListNode l1, ListNode l2) { ListNode ...
- mysql之数据库基本概念(mysql学习笔记一)
数据库系统 数据库管理系统(DBMS)+数据库(DATABASE)(+数据库管理员) DBS=dbms+db 定义: 大量信息进行管理的高效解决方案,按照数据结构来组织.存储和管理数据的仓库 关系 ...
- MySQL: InnoDB 还是 MyISAM?
MyISAM存储引擎 MyISAM是 默认存储引擎.它基于更老的ISAM代码,但有很多有用的扩展.MyISAM存储引擎的一些特征:· 所有数据值先存储低字节.这使得数据机和操作系统分离.二进 ...
- 一键清理Windows垃圾的BAT文件代码
@echo off color 0atitle win7一键清理系统垃圾echo ★☆ ★☆ ★☆ ★☆ ★☆★☆★☆ ★☆ ★☆ ★☆ ★☆★echo ★☆ ★☆ ★☆ ★☆ ★☆★☆★☆ ★☆ ★ ...
- [terry笔记]dblink
dblink在分布式数据库集群中很常见,今天简单的总结一下. db link 的命名和global_names有关,global_name是数据库全局名称,global_name在你所管理的数据库中要 ...
- python分片
刚刚学习,很新 >>> numbers = [1,2,3,4,5,6,7,8,9,10] >>> numbers[0:10:2] [1,3,5,7,9] >& ...
- MongoDB 学习笔记(二)—— MongoDB Shell
MongoDB自带一个JavaScript shell 可以从命令行中与MongoDB交互,功能非常强大.如在上一节最后一张图所看到,可以执行JavaScript程序. 运行Shell 前提是启动Mo ...
- [转]ORACLE的ProC用法讲解
pro*c是高级的用法,OCI是oracle的基础用法 如何编译.pc文件: proc code=cpp parse=none iname=filename.pc oname=filename.cp ...