CSUFT 1002 Robot Navigation
1002: Robot Navigation
Time Limit: 1 Sec | Memory Limit: 128 MB | |
Submit: 4 | Solved: 2 |
Description
A robot has been sent to explore a remote planet. To specify the path the robot should take, a program is sent each day. The program consists of a sequence of the following commands:
- FORWARD: move forward by one unit.
- TURN LEFT: turn left by 90 degrees. The robot remains at the same location.
- TURN RIGHT: turn right by 90 degrees. The robot remains at the same location.
The robot also has sensor units which allows it to obtain a map of its surrounding area. The map is represented as a grid ofMrows andNcolumns. Each grid point is represented by a coordinate (r,c) wherer = 0is the north edge of the map,r = M - 1is the south edge,c = 0is the west edge, andc = N - 1is the east edge. Some grid points contain hazards (e.g. craters) and the program must avoid these points or risk losing the robot.
Naturally, if the initial location and direction of the robot and its destination position are known, we wish to send the shortest program (one consisting of the fewest commands) to move the robot to its destination (we do not care which direction it faces at the destination). You are more interested in knowing the number of different shortest programs that can move the robot to its destination, because we may need to send different sequences as interplanetary communication is not necessarily reliable. However, the number of shortest programs can be very large, so you are satisfied to compute the number as a remainder under some modulus, knowing that something you learned in classes called the Chinese remainder theorem can be used to compute the final answer.
Input
The input consists of a number of cases. The first line of each case gives three integersM,N, and the modulusm(0 < M, N <= 1000, 0 < m <= 1000000000). The nextMlines containNcharacters each and specify the map. A '.' indicates that the robot can move into that grid point, and a '*' indicates a hazard. The final line gives four integersr1,c1,r2,c2followed by a characterd. The coordinates (r1,c1) specify the initial position of the robot, and (r2,c2) specify the destination. The character d is one of 'N', 'S', 'W', 'E' indicating the initial direction of the robot. It is assumed that the initial position and the destination are not hazards.
The input is terminated whenm = 0.
Output
For each case, print its case number, the modulus, as well as the remainder of the number of different programs when divided by the modulusm. The output of each case should be on a single line, in the format demonstrated below. If there is no program that can move the robot to its destination, output -1 for the number of different programs.
Sample Input
3 3 100
***
.*.
***
1 0 1 2 E
4 4 100
****
*.*.
*.*.
*...
1 1 1 3 N
4 8 100
********
...**...
*......*
********
1 0 1 7 E
0 0 0
Sample Output
Case 1: 100 -1
Case 2: 100 2
Case 3: 100 4
HINT
Source
#include <bits/stdc++.h>
using namespace std; const char* dirs = "NESW";
const int Maxn = ;
const int INF = 0x3f3f3f3f; int R,C;
int mod; char a[Maxn][Maxn]; struct Node
{
int r,c;
int dir;
Node(int r=,int c=,int dir=):r(r),c(c),dir(dir) {}
}; const int dr[] = {-,,,};
const int dc[] = {,,,-}; Node walk(const Node& u,int turn)
{
int dir = u.dir;
if(turn==) dir = (dir - + )%; // zuo zhuan
if(turn==) dir = (dir+ )%; // you zhuan
if(turn==)
return Node(u.r+dr[dir],u.c+dc[dir],dir);
// zhi zou
return Node(u.r,u.c,dir);
} int d[Maxn][Maxn][];
int sum[Maxn][Maxn][]; int dir_id(char c)
{
return strchr(dirs,c)-dirs;
} int r1,c1,r2,c2,dir; bool inside(int r,int c)
{
if(r>=&&r<R&&c>=&&c<C)
return true;
return false;
} int cnt; int bfs()
{
queue<Node> q;
memset(d,-,sizeof(d));
Node u(r1,c1,dir);
d[u.r][u.c][u.dir] = ;
sum[u.r][u.c][u.dir] = ; q.push(u); cnt = ;
while(!q.empty())
{
Node u = q.front();
q.pop();
for(int i=; i<; i++)
{
Node v = walk(u,i);
if(a[v.r][v.c]=='.'&&inside(v.r,v.c)&&d[v.r][v.c][v.dir]<)
{
d[v.r][v.c][v.dir] = d[u.r][u.c][u.dir] + ;
sum[v.r][v.c][v.dir] = sum[u.r][u.c][u.dir];
q.push(v);
}
else if(a[v.r][v.c]=='.'&&inside(v.r,v.c))
{
if(d[v.r][v.c][v.dir]==d[u.r][u.c][u.dir]+)
{
sum[v.r][v.c][v.dir] = (sum[v.r][v.c][v.dir]+sum[u.r][u.c][u.dir])%mod;
}
}
}
} int ans = INF;
for(int i=; i<; i++)
{
if(d[r2][c2][i]!=-)
ans = min(ans,d[r2][c2][i]);
} if(ans==INF)
return -; for(int i=; i<; i++)
{
if(ans==d[r2][c2][i])
{
cnt = (cnt + sum[r2][c2][i])%mod;
}
}
return cnt; } void _bfs()
{
queue<Node> q;
memset(d,-,sizeof(d));
Node u(r1,c1,dir);
d[u.r][u.c][u.dir] = ; q.push(u); vector<int> ans;
cnt = ;
while(!q.empty())
{
Node u = q.front();
q.pop(); if(u.r==r2&&u.c==c2)
{
if(ans.size()!=)
{
if(ans[]!=d[u.r][u.c][u.dir])
return ;
else (cnt++)%mod;
}
else
{
cnt++;
ans.push_back(d[u.r][u.c][u.dir]);
} }
for(int i=; i<; i++)
{
Node v = walk(u,i);
if(a[v.r][v.c]=='.'&&inside(v.r,v.c))
{
d[v.r][v.c][v.dir] = d[u.r][u.c][u.dir] + ;
q.push(v);
}
}
}
} int main()
{ int kase = ;
while(scanf("%d%d%d",&R,&C,&mod),R)
{
memset(d,-,sizeof(d));
for(int i=; i<R; i++)
scanf("%s",a[i]); char str[];
scanf("%d%d%d%d%s",&r1,&c1,&r2,&c2,str); dir = dir_id(str[]); printf("Case %d: %d %d\n",++kase,mod,bfs());
}
return ;
} /**************************************************************
Problem: 1002
User: YinJianZuiShuai
Language: C++
Result: Accepted
Time:284 ms
Memory:34260 kb
****************************************************************/
CSUFT 1002 Robot Navigation的更多相关文章
- HDU 4166 & BNU 32715 Robot Navigation (记忆化bfs)
题意:给一个二维地图,每个点为障碍或者空地,有一个机器人有三种操作:1.向前走:2.左转90度:3.右转90度.现给定起点和终点,问到达终点最短路的条数. 思路:一般的题目只是求最短路的长度,但本题还 ...
- Robot Perception for Indoor Navigation《室内导航中的机器人感知》
Felix Endres 论文下载 Technische Fakult¨ atAlbert-Ludwigs-Universit¨ at Freiburg Betreuer: Prof. Dr. Wol ...
- Simulating a Freight robot in Gazebo
Installation Before installing the simulation environment, make sure your desktop is setup with a st ...
- Simulating a Fetch robot in Gazebo
Installation Before installing the simulation environment, make sure your desktop is setup with a st ...
- 泡泡一分钟:Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps
Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps Fabian Bl¨ochliger, Marius Feh ...
- SLAM学习笔记(3)相关概念
SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述子.这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部 ...
- 2015 UESTC Winter Training #8【The 2011 Rocky Mountain Regional Contest】
2015 UESTC Winter Training #8 The 2011 Rocky Mountain Regional Contest Regionals 2011 >> North ...
- Robotics Tools
https://sites.google.com/site/sunglok/rv_tool/robot Robotics Tools Contents 1 Robotics Tutorials 2 R ...
- semantic segmentation 和instance segmentation
作者:周博磊链接:https://www.zhihu.com/question/51704852/answer/127120264来源:知乎著作权归作者所有,转载请联系作者获得授权. 图1. 这张图清 ...
随机推荐
- 30个最常用css选择器解析(zz)
你也许已经掌握了id.class.后台选择器这些基本的css选择器.但这远远不是css的全部.下面向大家系统的解析css中30个最常用的选择器,包括我们最头痛的浏览器兼容性问题.掌握了它们,才能真正领 ...
- Aspectj是什么
转载自:http://www.cnblogs.com/sunwke/articles/2568875.html 网上出现了很多讲解 AspectJ 的资料,但大多是从讲解 AspectJ 语法开始,然 ...
- ServiceController1
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...
- ofbiz进击 第五节。 --OFBiz配置之[general.properties] 共有属性的分析(含email)
文件内容如下 unique.instanceId=ofbiz1 #--为JobManger方法提供实例的ID(必须小于20个字符) currency.uom.id.default=USD ...
- URAL 1018 Binary Apple Tree(树DP)
Let's imagine how apple tree looks in binary computer world. You're right, it looks just like a bina ...
- mysql报错 "code":"08S01","msg":"SQLSTATE
2016-04-25 09:22 97人阅读 评论(0) 收藏 举报 分类: Magento(6) 今天在批量伪造测试数据时,MySQL收到下面异常:ERROR 1153 (08S01): Got a ...
- Uploadify在MVC中使用方法案例(一个视图多次上传单张图片)
Controller 中代码和 上一节文章(http://www.cnblogs.com/yechangzhong-826217795/p/3785842.html )一样 视图中代码如下: < ...
- 为VirtualBox里的Linux系统安装增强功能
先说下为什么要安装增强功能, 很重要的原因是分辨率,没有安装增强功能的虚拟机里的系统往往不能全屏的,屏幕显示的内容没有充满整个屏幕. 还有主机和客户机之间共享文件夹也需要客户机的系统安装了增强功能. ...
- SqlServer:此数据库处于单用户模式,导致数据库无法删除的处理
此数据库处理单用户模式,尚在连接当中,无法删除(既使将SQLServer停止后再启动也是如此) USE [master] GO /****** Object: StoredProcedure [dbo ...
- Mongodb 笔记05 创建副本集
创建副本集 1. 副本集:副本集时一组服务器,其中有一个主服务器(primary),用于处理客户端请求:还有多个备份服务器(secondary),用于保存主服务器的数据副本.如果主服务器崩溃了,备份服 ...