题意:给你m个数(m<=100),每个数的素因子仅来自于前t(t<=100)个素数,问这m个数的非空子集里,满足子集里的数的积为完全平方数的有多少个。

一开始就想进去里典型的dp世界观里,dp[n][mask]表示前n个数里为mask的有多少个,但显然这里t太大了。然后又YY了很多很多。像m少的时候应该用的是高消。即对每个因子列一个xor方程,然后高斯消元,其中自由元的个数就是可以随便取的,所以答案是2^(自由元个数),然后把空集的减掉,就是2^(自由元)-1,不过大数是必须的。

#include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std; #define ll long long
#define maxn 110 int t,m;
int b[maxn]; int p[1000+50];
int tot;
int vis[1000+50]; void getPrime()
{
memset(vis,0,sizeof(vis));
tot=0;
for(int i=2;i<=1000;++i){
if(!vis[i]) p[tot++]=i;
for(int j=0;j<tot&&i*p[j]<=1000;++j){
vis[i*p[j]]=true;
if(!(i%p[j])) break;
}
}
} int a[maxn][maxn]; int gauss()
{
int row=t,col=m;
int fix=0;
int cur=0;
int row_choose;
for(int i=0;i<col&&fix<row;++i){
row_choose=-1;
for(int j=cur;j<row;++j){
if(a[j][i]==1) row_choose=j;
}
if(row_choose==-1) {
continue;
}
++fix;
swap(a[row_choose],a[cur]);
for(int j=0;j<row;++j){
if(j==cur) continue;
if(a[j][i]==1) {
for(int k=i;k<col;++k){
a[j][k]^=a[cur][k];
}
}
}
++cur;
}
return col-fix;
} const int base=10000;
const int width=4;
const int N=100;
const int static ten[width]={1,10,100,1000};
struct bint
{
int ln;
int v[N];
bint(int r=0){
for(ln=0;r>0;r/=base) v[ln++]=r%base;
}
bint & operator = (const bint &r){
memcpy(this,&r,(r.ln+1)*sizeof(int));
return *this;
}
}; bint operator + (const bint &a,const bint &b){
bint res;int i,cy=0;
for(i=0;i<a.ln||i<b.ln||cy>0;i++){
if(i<a.ln) cy+=a.v[i];
if(i<b.ln) cy+=b.v[i];
res.v[i]=cy%base;cy/=base;
}
res.ln=i;
return res;
}
bint operator- (const bint & a, const bint & b){
bint res; int i, cy = 0;
for (res.ln = a.ln, i = 0; i < res.ln; i++) {
res.v[i] = a.v[i] - cy;
if (i < b.ln) res.v[i] -= b.v[i];
if (res.v[i] < 0) cy = 1, res.v[i] += base;
else cy = 0;
}
while (res.ln > 0 && res.v[res.ln - 1] == 0) res.ln--;
return res;
} bint operator* (const bint & a, const bint & b){
bint res; res.ln = 0;
if (0 == b.ln) { res.v[0] = 0; return res; }
long long i, j, cy;
for (i = 0; i < a.ln; i++) {
for (j = cy = 0; j < b.ln || cy > 0; j++, cy /= base) {
if (j < b.ln) cy += a.v[i] * b.v[j];
if (i + j < res.ln) cy += res.v[i + j];
if (i + j >= res.ln) res.v[res.ln++] = cy % base;
else res.v[i + j] = cy % base;
}
}
return res;
} void write(const bint & v){
int i;
printf("%d", v.ln == 0 ? 0 : v.v[v.ln - 1]);
for (i = v.ln - 2; i >= 0; i--)
printf("%04d", v.v[i]); // ! 4 == width
// printf("\n");
} int main()
{
getPrime();
while(~scanf("%d%d",&t,&m)){
memset(a,0,sizeof(a));
for(int i=0;i<m;++i){
scanf("%d",b+i);
for(int j=0;j<t;++j){
int cnt=0;
while(b[i]%p[j]==0){
b[i]/=p[j];cnt^=1;
}
a[j][i]=cnt;
}
}
int res=gauss();
bint x(1);
for(int i=0;i<res;++i){
x=x*2;
}
x=x-1;
write(x);puts("");
}
return 0;
}

Acdream1217 Cracking' RSA(高斯消元)的更多相关文章

  1. SGU 200.Cracking RSA(高斯消元)

    时间限制:0.25s 空间限制:4M 题意: 给出了m(<100)个数,这m个数的质因子都是前t(<100)个质数构成的. 问有多少个这m个数的子集,使得他们的乘积是完全平方数. Solu ...

  2. SGU 200. Cracking RSA(高斯消元+高精度)

    标题效果:鉴于m整数,之前存在的所有因素t素数.问:有多少子集.他们的产品是数量的平方. 解题思路: 全然平方数就是要求每一个质因子的指数是偶数次. 对每一个质因子建立一个方程. 变成模2的线性方程组 ...

  3. SGU 200 Cracking RSA (高斯消元)

    转载请注明出处,谢谢http://blog.csdn.net/ACM_cxlove?viewmode=contents    by---cxlove 题意:给出m个整理,因子全部为前t个素数.问有多少 ...

  4. 【BZOJ-3143】游走 高斯消元 + 概率期望

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2264  Solved: 987[Submit][Status] ...

  5. 【BZOJ-3270】博物馆 高斯消元 + 概率期望

    3270: 博物馆 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 292  Solved: 158[Submit][Status][Discuss] ...

  6. *POJ 1222 高斯消元

    EXTENDED LIGHTS OUT Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9612   Accepted: 62 ...

  7. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  8. hihoCoder 1196 高斯消元·二

    Description 一个黑白网格,点一次会改变这个以及与其连通的其他方格的颜色,求最少点击次数使得所有全部变成黑色. Sol 高斯消元解异或方程组. 先建立一个方程组. \(x_i\) 表示这个点 ...

  9. BZOJ 2844 albus就是要第一个出场 ——高斯消元 线性基

    [题目分析] 高斯消元求线性基. 题目本身不难,但是两种维护线性基的方法引起了我的思考. void gauss(){ k=n; F(i,1,n){ F(j,i+1,n) if (a[j]>a[i ...

随机推荐

  1. [笔记]--Oracle 10g在Windows 32位系统使用2G以上内存

    1.修改c:\boot.ini文件 打开boot.ini文件,我的电脑->属性->高级->启动和恢复->编辑,设置在最后一行末尾添加/PAE选项后如下: [boot loade ...

  2. 线程操作API

    线程操作API 1.currentThread 2.getId() .getName().getPriority().getStart.isAlive().isDaemon().isInterrupt ...

  3. [转]从普通DLL中导出C++类 – dllexport和dllimport的使用方法(中英对照、附注解)

      这几天写几个小程序练手,在准备将一个类导出时,发现还真不知道如果不用MFC的扩展DLL,是怎么导出的.但我知道dllexport可以导出函数和变量,而且MFC扩展DLL就算是使用了MFC的功能,但 ...

  4. Oracle Rac crs无法启动

    OS:ORACLE LINUX 5.7 DB:11.2.0.3 RAC:YES 故障:1.两节点RAC,节点分别为linuxdb1.linuxdb2,其中节点linuxdb2服务器出现故障,无法启动2 ...

  5. 嵌入式中的 *(volatile unsigned int *)0x500 解释

    C语言中*(volatile unsigned int *)0x500的解释: 如下: (unsigned int *)0x500:将地址0x500强制转化为int型指针*(unsigned int ...

  6. Go append方法

    append用来将元素添加到切片末尾并返回结果.看代码: package main import "fmt" func main() { x := [],,} y := [],,} ...

  7. Swift基础小结_2

    import Foundation // MARK: - ?和!的区别// ?代表可选类型,实质上是枚举类型,里面有None和Some两种类型,其实nil相当于OPtional.None,如果非nil ...

  8. Python-memcached的基本使用

    想学Python,又想研究下memcached的客户端,于是拿Python-memcached研究研究~~~ 1.memcached的安装 请参考本博另一文章<Linux下安装memcached ...

  9. 48.Warning: (vsim-3534) [FOFIR] - Failed to open file "sp_rom_8x256_sr.mif" for reading.

    当在仿真ROM IP核文件时,会出现这种警告,而这种警告的结果是ROM不能输出数据,原因是mif文件要放在modelsim工程文件目录下.类似的,有时候会报错,Failed to open file& ...

  10. CentOS安装vsftpd

    版本:vsftpd-3.0.2-9.el7.x86_64(CentOS是64位的). 1.安装vsftpd yum -y install vsftpd 2.配置vsftpd 修改配置前把原始配置文件备 ...