Description

Input

第一行包含两个整数 N,M,表示城市个数及特征项链的长度。 接下来的N-1 行, 每行两个整数 x,y, 表示城市 x 与城市 y 有直接道路相连。城市由1~N进行编号。接下来的一行,包含一个长度为 N,仅包含小写字母的字符串,第 i 位的字符表示在城市 i 流行的原料类型。 最后一行, 包含一个长度为 M, 仅包含小写字母的字符串, 表示特征字符串。

Output

仅包含一个整数,为 N2 * Expectation

Sample Input

3 5
1 2
1 3
aab
abaab

Sample Output

15

Solution

点分治+后缀自动机....

思路是真的神奇...看了好久题解才看明白。

先考虑暴力,有一个很显然的\(O(n^2)\)的暴力:

  • 枚举每个点作为起点,\(dfs\)另一个点,\(dfs\)的同时在特征字符串\(S\)的\(SAM\)上跑,顺便统计答案就好了。
  • 这个在\(SAM\)上跑实际上就相当于每次在一个已经匹配了的串后面加一个字符,那么直接沿着\(SAM\)的转换边走就好了。

换个角度思考,还有另一种暴力:

  • 枚举一个点\(x\),统计出每条以这个点为\(lca\)的路径的代价。
  • 考虑这个看起来高级一点的暴力怎么做,
  • 对于点\(x\),路径肯定是\(a\to x \to b\)的形式,那么我们把他拆成两段\(a\to x\)和\(x \to b\),注意到如果我们把特征字符串反过来,那么这两种其实就是一样的,所以我们现在考虑\(a \to x\)怎么统计,然后在翻转过的\(S\)上再做一遍就好了。
  • 那么我们就是要统计出对于自动机上的点\(i\),有多少以\(x\)结尾的路径字符串在这个点。
  • 那么问题就相当于当前已经匹配了一个串,要在这个串前面加一个字符,那么沿着\(parent\)树跳就好了。
  • 最后答案就是对于字符串上每个点,这个点开始和这个点结束的方案之积 的和。

注意到第二种暴力可以用点分治优化,那么第二种暴力的复杂度就是\(O(n\log n+nm)\)。

考虑如何把后面一项优化一下,注意到第一种方案是不需要每次都扫一遍自动机的,所以可以在点分治的时候设一个阀值\(B\),若\(size>B\)就用第二种,否则用第一种。

可以发现当\(B=\sqrt{n}\)的时候复杂度最优,此时时间复杂度为\(O((n+m)\sqrt{n})\)。

#include<bits/stdc++.h>
using namespace std; #define ll long long void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
} void print(ll x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(ll x) {if(!x) putchar('0');else print(x);putchar('\n');} const int maxn = 2e5+10;
const int inf = 1e9; ll ans;
char s[maxn];
int n,m,rt,siz,B,top;
int head[maxn],tot,a[maxn];
int vis[maxn],f[maxn],sz[maxn],tmp[maxn],t[maxn];
struct edge{int to,nxt;}e[maxn<<1]; void ins(int u,int v) {e[++tot]=(edge){v,head[u]},head[u]=tot;} struct Suffix_Automaton {
int cnt,qs,lstp;
int par[maxn],tr[maxn][26],ml[maxn],pos[maxn],sz[maxn];
int t[maxn],r[maxn],son[maxn][26],str[maxn],tag[maxn],rev[maxn]; void append(int x,int v) {
int p=lstp,np=++cnt;pos[np]=v,sz[np]=1,ml[np]=ml[p]+1,rev[v]=np;lstp=np;
for(;p&&tr[p][x]==0;p=par[p]) tr[p][x]=np;
if(!p) return par[np]=qs,void();
int q=tr[p][x];
if(ml[p]+1<ml[q]) {
int nq=++cnt;ml[nq]=ml[p]+1;
memcpy(tr[nq],tr[q],sizeof tr[nq]);
par[nq]=par[q],par[q]=par[np]=nq;
for(;p&&tr[p][x]==q;p=par[p]) tr[p][x]=nq;
} else par[np]=q;
} void prepare(char *ss) {
lstp=qs=cnt=1;
for(int i=1;i<=m;i++) append(str[i]=ss[i]-'a',i); for(int i=1;i<=cnt;i++) t[ml[i]]++;
for(int i=1;i<=m;i++) t[i]+=t[i-1];
for(int i=1;i<=cnt;i++) r[t[ml[i]]--]=i; for(int i=cnt;i;i--) {
int p=r[i];
sz[par[p]]+=sz[p];
if(!pos[par[p]]) pos[par[p]]=pos[p];
son[par[p]][str[pos[p]-ml[par[p]]]]=p;
}
} void mark(int x,int fa,int now,int len) {
if(len==ml[now]) now=son[now][a[x]];
else if(str[pos[now]-len]!=a[x]) now=0;
if(!now) return ;len++;tag[now]++;
for(int i=head[x];i;i=e[i].nxt)
if(e[i].to!=fa&&!vis[e[i].to]) mark(e[i].to,x,now,len);
} void push() {for(int i=1;i<=cnt;i++) tag[r[i]]+=tag[par[r[i]]];}
}sam1,sam2; void get_rt(int x,int fa) {
sz[x]=1,f[x]=0;
for(int i=head[x];i;i=e[i].nxt)
if(e[i].to!=fa&&!vis[e[i].to])
get_rt(e[i].to,x),sz[x]+=sz[e[i].to],f[x]=max(f[x],sz[e[i].to]);
f[x]=max(f[x],siz-sz[x]);
if(f[x]<f[rt]) rt=x;
} void get_node(int x,int fa) {
t[++top]=x;
for(int i=head[x];i;i=e[i].nxt)
if(e[i].to!=fa&&!vis[e[i].to]) get_node(e[i].to,x);
} void dfs(int x,int fa,int now) {
now=sam1.tr[now][a[x]];
if(!now) return ;
ans+=sam1.sz[now];
for(int i=head[x];i;i=e[i].nxt)
if(e[i].to!=fa&&!vis[e[i].to]) dfs(e[i].to,x,now);
} void work(int x,int fa,int op) {
memset(sam1.tag,0,(sam1.cnt+2)*4);
memset(sam2.tag,0,(sam2.cnt+2)*4);
if(fa) sam1.mark(x,fa,sam1.tr[1][a[fa]],1),sam2.mark(x,fa,sam2.tr[1][a[fa]],1);
else sam1.mark(x,fa,1,0),sam2.mark(x,fa,1,0);
sam1.push(),sam2.push();
for(int i=1;i<=m;i++) ans+=1ll*op*sam1.tag[sam1.rev[i]]*sam2.tag[sam2.rev[m-i+1]];
} void solve(int x) {
get_rt(x,0);siz=sz[x];
if(siz<=B) {
top=0,get_node(x,0);
for(int i=1;i<=top;i++) dfs(t[i],0,sam1.qs);
for(int i=1;i<=top;i++) vis[t[i]]=0;
return ;
}
for(int i=head[x];i;i=e[i].nxt) tmp[e[i].to]=sz[e[i].to];
work(x,0,1);
for(int i=head[x];i;i=e[i].nxt) if(!vis[e[i].to]) work(e[i].to,x,-1);
vis[x]=1;
for(int i=head[x];i;i=e[i].nxt)
if(!vis[e[i].to]) siz=tmp[e[i].to],rt=0,get_rt(e[i].to,x),solve(rt);
} int main() {
read(n),read(m);B=sqrt(n);
for(int i=1,x,y;i<n;i++) read(x),read(y),ins(x,y),ins(y,x);
scanf("%s",s+1);
for(int i=1;i<=n;i++) a[i]=s[i]-'a';
scanf("%s",s+1);
sam1.prepare(s);
reverse(s+1,s+m+1);
sam2.prepare(s);
siz=n,f[0]=inf,get_rt(1,0),solve(rt);write(ans);
return 0;
}

[BZOJ1921] [CTSC2010]珠宝商的更多相关文章

  1. [CTSC2010]珠宝商 SAM+后缀树+点分治

    [CTSC2010]珠宝商 不错的题目 看似无法做,n<=5e4,8s,根号算法? 暴力一: n^2,+SAM上找匹配点的right集合sz,失配了直接退出 暴力二: O(m) 统计过lca=x ...

  2. P4218 [CTSC2010]珠宝商

    P4218 [CTSC2010]珠宝商 神题... 可以想到点分治,细节不写了... (学了个新姿势,sam可以在前面加字符 但是一次点分治只能做到\(O(m)\),考虑\(\sqrt n\)点分治, ...

  3. CTSC2010 珠宝商

    珠宝商 题目描述 Louis.PS 是一名精明的珠宝商,他出售的项链构造独特,很大程度上是因为他的制作方法与众不同.每次 Louis.PS 到达某个国家后,他会选择一条路径去遍历该国的城市.在到达一个 ...

  4. 洛谷P4218 [CTSC2010]珠宝商(后缀自动机+点分治)

    传送门 这题思路太清奇了……->题解 //minamoto #include<iostream> #include<cstdio> #include<cstring ...

  5. @bzoj - 1921@ [ctsc2010]珠宝商

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 简述版题意:给定字符串 S 与一棵树 T,树上每个点有一个字符. ...

  6. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  7. Sam做题记录

    Sam做题记录 Hihocoder 后缀自动机二·重复旋律5 求一个串中本质不同的子串数 显然,答案是 \(\sum len[i]-len[fa[i]]\) Hihocoder 后缀自动机三·重复旋律 ...

  8. 【BZOJ1921】【CTSC2010】珠宝商(点分治,后缀自动机)

    [BZOJ1921][CTSC2010]珠宝商(点分治,后缀自动机) 题面 洛谷 BZOJ权限题 题解 如果要我们做暴力,显然可以以某个点为根节点,然后把子树\(dfs\)一遍,建出特征串的\(SAM ...

  9. [CTSC2010]性能优化

    [CTSC2010]性能优化 循环卷积快速幂 两个注意点:n+1不是2^k*P+1形式,任意模数又太慢?n=2^k1*3^k2*5^k3*7^k4 多路分治!深刻理解FFT运算本质:分治,推式子得到从 ...

随机推荐

  1. Java OOP——第四章 异常

    1. 接口:接口就是给出一些没有内容的方法,封装到一起,到某个类要使用的时候,在根据具体情况把这些方法写出来. 接口是更加抽象的抽象的类, 抽象类里的方法可以有方法体, 接口里的所有方法都没有方法体. ...

  2. vuex重置所有state(可定制)

    在正式场景中我们经常遇到一个问题,就是登出页面或其他操作的时候,我们需要重置所有的vuex,让其变为初始状态,那么,就涉及到了多种方法:1.页面刷新: window.location.reload() ...

  3. Tornado学习

    为什么用Tornado? 异步编程原理 服务器同时要对许多客户端提供服务,他的性能至关重要.而服务器端的处理流程,只要遇到了I/O操作,往往需要长时间的等待.   屏幕快照 2018-10-31 上午 ...

  4. vertical-align垂直居中

    <div id="content"> <div id="weizi"> 锄禾日当午,<br> 汗滴禾下土.<br> ...

  5. npm run build打包后自定义动画没有执行

    问题描述:在vue项目中,当你自己写了一些自定义动画效果,然后你npm run build打包项目放到线上环境后,发现动画并没有效果. 解决办法:在vue项目中找到build文件夹下的vue-load ...

  6. 阅读《大型网站技术架构》,并结合"重大需求征集系统"有感

    今天阅读了<大型网站技术架构:核心原理与案例分析>的第五.六.七章.这三张主要是讲述了一个系统的可用性.伸缩性和可扩展性.而根据文中所讲述的,一个系统的可用性主要是体现在这个系统的系统服务 ...

  7. 人人都会设计模式:观察者模式--Observer

    https://segmentfault.com/a/1190000012295887 观察者模式是抽像通知者和观察者,达到具体通知者跟具体观察者没有偶合.能达到不管是切换通知者,或者是切换观察者,都 ...

  8. Qt5 调试之详细日志文件输出(qInstallMessageHandler)

    注明:以下方法仅适用于 Qt5 及以上版本  函数说明: QtMessageHandler qInstallMessageHandler(QtMessageHandler handler) 此函数在使 ...

  9. Python3 列表,元组,字典,字符串知识小结

    一.知识概要 1. 列表,元组,字典,字符串的创建方式 2. 列表,元组,字典,字符串的方法调用 3. 列表,元组,字典,字符串的常规用法 二.列表 # 列 表 # 列表基础 list_1 = ['a ...

  10. Java——自动生成30道四则运算---18.09.27

    package chuti;import java.io.PrintWriter;import java.util.Scanner;import java.io.FileNotFoundExcepti ...