题目描述

给你两个整数N和K,要求你输出N!的K进制的位数。

输入

有多组输入数据,每组输入数据各一行,每行两个数——N,K

输出

每行一个数为输出结果。

样例输入

2 5
2 10
10 10
100 200

样例输出

1
1
7
69


题解

数论

题目转化一下变为求$\lfloor\log_kn!\rfloor+1$,使用换底公式,问题转化为求$\log n$。

$n$有$2^31$之大,显然不能暴力去求。

这里需要用到Stirling公式:$n!\approx\sqrt{2\pi n}(\frac ne)^n$。这个公式在$n$较大时比较精确,因此可以直接套用;当$n$较小时精确度没有那么高,因此需要小范围暴力。

直接使用cmath中的函数对右半部分取对数即可(右半部分化简结果为$\frac 12\log 2\pi n$+n\log\frac ne),再除以$\log k$,下取整+1即为答案。

注意需要long long。

#include <cmath>
#include <cstdio>
const double pi = acos(-1) , e = exp(1);
int main()
{
int n , k , i;
while(~scanf("%d%d" , &n , &k))
{
if(n <= 100)
{
double ans = 0;
for(i = 1 ; i <= n ; i ++ ) ans += log(i);
printf("%d\n" , (int)floor(ans / log(k)) + 1);
}
else printf("%lld\n" , (long long)floor((log(2 * pi * n) / 2 + log(n / e) * n) / log(k)) + 1);
}
return 0;
}

【bzoj3000】Big Number 数论的更多相关文章

  1. bzoj3000 Big Number 数论,斯特林公式

    Description 给你两个整数N和K,要求你输出N!的K进制的位数. Input 有多组输入数据,每组输入数据各一行,每行两个数——N,K Output 每行一个数为输出结果 Sample In ...

  2. Leetcode 263 Ugly Number 数论 类似质因数分解

    Ugly Number的质因数仅为2,3,5 将输入的数分别除以2,3,5直到不能除,看是否为1,为1的是Ugly Number,其他则不是. class Solution { public: boo ...

  3. BZOJ3000 Big Number

    由Stirling公式: $$n! \approx \sqrt{2 \pi n} (\frac{n}{e})^n$$ 故:$$\begin{align} ans &= log_k n! + 1 ...

  4. [POJ3696]The Luckiest number(数论)

    题目:http://poj.org/problem?id=3696 题意:给你一个数字L,你要求出一个数N,使得N是L的倍数,且N的每位数都必须是8,输出N的位数(如果不存在输出0) 分析: 首先我们 ...

  5. Leetcode 9 Palindrome Number 数论

    判断一个数是否是回文数 方法是将数回转,看回转的数和原数是否相同 class Solution { public: bool isPalindrome(int x) { ) return false; ...

  6. [BZOJ3000] Big Number (Stirling公式)

    Description 给你两个整数N和K,要求你输出N!的K进制的位数. Input 有多组输入数据,每组输入数据各一行,每行两个数——N,K Output 每行一个数为输出结果. Sample I ...

  7. [BZOJ3000]Big Number(斯特林公式)

    求n!在k进制下的位数,n<=1e18 斯特林公式:$n!\approx \sqrt{2\pi n}(\frac{n}{e})^n$ 在n很大的时候有较好的精度保证. $\log_{k}n!+1 ...

  8. ACM在线模板

    转载自:https://blog.csdn.net/f_zyj/article/details/51594851 Index 分类细则 说起分类准则,我也是很头疼,毕竟对于很多算法,他并不是单调的,而 ...

  9. acm 模板

    Index 分类细则 说起分类准则,我也是很头疼,毕竟对于很多算法,他并不是单调的,而是多方面的都挂得上钩.所以,从始至终,分类准则一直都是我很纠结的问题. 经过思量,首先分出比较主流的几类:Numb ...

随机推荐

  1. 【MYSQL笔记3】MYSQL过程式数据库对象之存储过程的调用、删除和修改

    mysql从5.0版本开始支持存储过程.存储函数.触发器和事件功能的实现. 我们以一本书中的例题为例:创建xscj数据库的存储过程,判断两个输入的参数哪个更大.并调用该存储过程. (1)调用 首先,创 ...

  2. lvs集群实现lvs-dr模型和lvs-nat模型

    ipvsadm ipvsadm命令是lvs集群在应用层的管理工具,我们可以通过此ipvsadm来管理lvs的配置,其实现了集群服务管理:增.删.改,集群服务的RS管理:增.删.改以及查看集群状态. 管 ...

  3. 谈谈toLocaleString()

    如何理解toLocaleString()? toLocaleString()就是把数组转换为本地字符串.首先调用每个数组元素的toLocaleString()方法,然后使用地区特定的分隔符把生成的字符 ...

  4. angularjs Directive自定义指令详解

    作用:需要用Directive有下面的情景: 1.使你的Html更具语义化,不需要深入研究代码和逻辑即可知道页面的大致逻辑. 2. 抽象一个自定义组件,在其他地方进行重用. 3.使用公共代码,减少重复 ...

  5. [原]解决phpstudy下的nginx无法运行的问题

    一直在用phpstudy下的apache,今天忽然想切换到nginx,出现了一些错误,最终还是解决了. 之前是php 5.3 + apache 现在是php 5.3n + nginx 问题就出在这n上 ...

  6. Mysql 5.7 开启远程连接

    1 在控制台执行 mysql -uroot -p 系统提示输入数据库root用户的密码,输入完成后即进入mysql控制台 2 选择数据库 mysql -uroot -p use mysql; 开启远程 ...

  7. sort函数

    做项目的时候,排序是一种经常要用到的操作.如果每次都自己写个冒泡之类的O(n^2)排序,不但程序容易超时,而且浪费宝贵的时间,还很有可能写错.STL里面有个sort函数,可以直接对数组排序,复杂度为n ...

  8. 015---Django的forms组件

    Django form表单   Form介绍 我们之前在HTML页面中利用form表单向后端提交数据时,都会写一些获取用户输入的标签并且用form标签把它们包起来. 与此同时我们在好多场景下都需要对用 ...

  9. go学习笔记-类型转换(Type Conversion)

    类型转换(Type Conversion) 类型转换用于将一种数据类型的变量转换为另外一种类型的变,基本格式 type_name(expression) type_name 为类型,expressio ...

  10. SGU 495

    #include<bits/stdc++.h> using namespace std; #define ll long long ; ; int n,m; double dp[N]; / ...