题目描述

给你两个整数N和K,要求你输出N!的K进制的位数。

输入

有多组输入数据,每组输入数据各一行,每行两个数——N,K

输出

每行一个数为输出结果。

样例输入

2 5
2 10
10 10
100 200

样例输出

1
1
7
69


题解

数论

题目转化一下变为求$\lfloor\log_kn!\rfloor+1$,使用换底公式,问题转化为求$\log n$。

$n$有$2^31$之大,显然不能暴力去求。

这里需要用到Stirling公式:$n!\approx\sqrt{2\pi n}(\frac ne)^n$。这个公式在$n$较大时比较精确,因此可以直接套用;当$n$较小时精确度没有那么高,因此需要小范围暴力。

直接使用cmath中的函数对右半部分取对数即可(右半部分化简结果为$\frac 12\log 2\pi n$+n\log\frac ne),再除以$\log k$,下取整+1即为答案。

注意需要long long。

#include <cmath>
#include <cstdio>
const double pi = acos(-1) , e = exp(1);
int main()
{
int n , k , i;
while(~scanf("%d%d" , &n , &k))
{
if(n <= 100)
{
double ans = 0;
for(i = 1 ; i <= n ; i ++ ) ans += log(i);
printf("%d\n" , (int)floor(ans / log(k)) + 1);
}
else printf("%lld\n" , (long long)floor((log(2 * pi * n) / 2 + log(n / e) * n) / log(k)) + 1);
}
return 0;
}

【bzoj3000】Big Number 数论的更多相关文章

  1. bzoj3000 Big Number 数论,斯特林公式

    Description 给你两个整数N和K,要求你输出N!的K进制的位数. Input 有多组输入数据,每组输入数据各一行,每行两个数——N,K Output 每行一个数为输出结果 Sample In ...

  2. Leetcode 263 Ugly Number 数论 类似质因数分解

    Ugly Number的质因数仅为2,3,5 将输入的数分别除以2,3,5直到不能除,看是否为1,为1的是Ugly Number,其他则不是. class Solution { public: boo ...

  3. BZOJ3000 Big Number

    由Stirling公式: $$n! \approx \sqrt{2 \pi n} (\frac{n}{e})^n$$ 故:$$\begin{align} ans &= log_k n! + 1 ...

  4. [POJ3696]The Luckiest number(数论)

    题目:http://poj.org/problem?id=3696 题意:给你一个数字L,你要求出一个数N,使得N是L的倍数,且N的每位数都必须是8,输出N的位数(如果不存在输出0) 分析: 首先我们 ...

  5. Leetcode 9 Palindrome Number 数论

    判断一个数是否是回文数 方法是将数回转,看回转的数和原数是否相同 class Solution { public: bool isPalindrome(int x) { ) return false; ...

  6. [BZOJ3000] Big Number (Stirling公式)

    Description 给你两个整数N和K,要求你输出N!的K进制的位数. Input 有多组输入数据,每组输入数据各一行,每行两个数——N,K Output 每行一个数为输出结果. Sample I ...

  7. [BZOJ3000]Big Number(斯特林公式)

    求n!在k进制下的位数,n<=1e18 斯特林公式:$n!\approx \sqrt{2\pi n}(\frac{n}{e})^n$ 在n很大的时候有较好的精度保证. $\log_{k}n!+1 ...

  8. ACM在线模板

    转载自:https://blog.csdn.net/f_zyj/article/details/51594851 Index 分类细则 说起分类准则,我也是很头疼,毕竟对于很多算法,他并不是单调的,而 ...

  9. acm 模板

    Index 分类细则 说起分类准则,我也是很头疼,毕竟对于很多算法,他并不是单调的,而是多方面的都挂得上钩.所以,从始至终,分类准则一直都是我很纠结的问题. 经过思量,首先分出比较主流的几类:Numb ...

随机推荐

  1. 二、html篇

    1.<br/> 有时css实现换行比较麻烦,可以使用该标签进行换行. 2.<strong></strong>  <ins></ins>  & ...

  2. 微信小程序使用相机

    <view class="page-body"> <view class="page-body-wrapper"> <camera ...

  3. 响应式布局--设置rem自适应

    //designWidth:设计稿的实际宽度值,需要根据实际设置 //maxWidth:制作稿的最大宽度值,需要根据实际设置 //这段js的最后面有两个参数记得要设置,一个为设计稿实际宽度,一个为制作 ...

  4. CSS 转载

    CSS介绍 CSS(Cascading Style Sheet,层叠样式表)定义如何显示HTML元素. 当浏览器读到一个样式表,它就会按照这个样式表来对文档进行格式化(渲染). CSS语法 CSS实例 ...

  5. Python基于jieba的中文词云

    今日学习了python的词云技术 from os import path from wordcloud import WordCloud import matplotlib.pyplot as plt ...

  6. Python学习:运算符

    简单运算符: +(加) 两个对象相加 -(减) 从一个数中减去另一个数,如果第一个操作数不存在,则假定为零 *(乘) 给出两个数的乘积,或返回字符串重复指定次数后的结果   Eg.'haha' * 3 ...

  7. Qt之pro文件解析

    在我们创建Qt工程项目时,Qt Creator总会创建一个.pro文件,我们称.pro文件为Qt的工程管理文件.一个工程项目可以包含一个或多个.pro文件.理解和掌握pro文件的用法,将有利于Qt开发 ...

  8. HDOJ 1176 免费馅饼(完全背包)

    参考:https://blog.csdn.net/hhu1506010220/article/details/52369785 https://blog.csdn.net/enjoying_scien ...

  9. SPFA算法(2) POJ 1511 Invitation Cards

    原题: Invitation Cards Time Limit: 8000MS   Memory Limit: 262144K Total Submissions: 31230   Accepted: ...

  10. 48-Identity MVC:Model前后端验证

    1-创建RegisterViewModel类 namespace MvcCookieAuthSample.ViewModel { public class RegisterViewModel { [R ...