URAL 1932 The Secret of Identifier(容斥)
Description
Input
Output
题目大意:给n个字符串,每个字符串有4个字符(其实是4位16进制数),输出这些字符串中有1位不同的字符串个数、有2位不同的字符串个数、有3位不同的字符串个数、有4位不同的字符串个数.
思路:用一个数组sum[i][j]存下在状态 i 下 j 的出现次数,如sum[3][244]就代表XXF4的出现次数:其中3是二进制的0011,代表是计算最后两位的出现次数,前面两位为任意字符;F4(10进制为244)则为后两位为F4的字符串的出现次数;XX为任意字符。
那么,扫一遍,统计一下,就能知道:一个字符相同的对数、两个字符相同的对数、三个字符相同的对数。注意,这样算的时候,如aaaa和aaab,这个一个字符相同的对数是算了3遍的,所以要减回去。
至于怎么减回去大概可以用容斥原理,我写的那些其实是我自己YY的,我不会容斥o(╯□╰)o
代码(62MS):
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long LL; LL sum[][ << ];
char s[];
int n, maxl; inline int trans(char c) {
if(isdigit(c)) return c - '';
return c - 'a' + ;
} void init() {
for(int p = ; p < n; ++p) {
scanf("%s", &s[]);
for(int i = ; i <= ; ++i) {
int t = ;
if(i&) t += trans(s[]) * (<<);
if(i&) t += trans(s[]) * (<<);
if(i&) t += trans(s[]) * (<<);
if(i&) t += trans(s[]);
++sum[i][t];
maxl = max(maxl, t);
}
}
} LL ans[], tmp[]; inline int bit_count(int x) {
int ret = ;
while(x > ) ret += (x & ), x >>= ;
return ret;
} void solve() {
for(int i = ; i <= ; ++i) {
int x = bit_count(i);
for(int j = ; j <= maxl; ++j) tmp[x] += sum[i][j] * (sum[i][j] - ) / ;
}
ans[] = tmp[];//1位不同=3位相同
ans[] = tmp[] - * tmp[];
ans[] = tmp[] - * tmp[] + * tmp[];
ans[] = LL(n - ) * n / - ans[] - ans[] - ans[];
cout<<ans[]<<' '<<ans[]<<' '<<ans[]<<' '<<ans[]<<endl;
} int main() {
scanf("%d", &n);
init();
solve();
}
URAL 1932 The Secret of Identifier(容斥)的更多相关文章
- ural 1932 The Secret of Identifier 容斥
主题链接:点击打开链接 stl+容斥 #include <cstdio> #include <cstring> #include <algorithm> #incl ...
- URAL 1932 The Secret of Identifier 题解
http://acm.timus.ru/problem.aspx?space=1&num=1932 B - The Secret of Identifier Time Limit:1000MS ...
- ural 1932 The Secret of Identifier (容斥原理)
标题效果: 计算到n字符串. 精确到只是有一个不同的字符,两个不同的字符.三个不同的字符,四对不同的字符. IDEAS: 枚举状态. dp[i] [j] ...当前串取出 i 状态下的全部字符转化成十 ...
- Tmutarakan Exams URAL - 1091(莫比乌斯函数 || 容斥)
题意: 求1 - s 中 找出k个数 使它们的gcd > 1 求这样的k个数的对数 解析: 从每个素数的倍数中取k个数 求方案数 然后素数组合,容斥一下重的 奇加偶减 莫比乌斯函数的直接套模 ...
- HDU 5514 Frogs 容斥定理
Frogs Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5514 De ...
- hdu 5514 Frogs(容斥)
Frogs Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- hdu 5514 Frogs 容斥思想+gcd 银牌题
Frogs Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- Lucky HDU - 5213 (莫队,容斥)
WLD is always very lucky.His secret is a lucky number . is a fixed odd number. Now he meets a strang ...
- POJ1091跳蚤(容斥 + 唯一分解 + 快速幂)
题意:规定每次跳的单位 a1, a2, a3 …… , an, M,次数可以为b1, b2, b3 …… bn, bn + 1, 正好表示往左,负号表示往右, 求能否调到左边一位,即 a1* b1 ...
随机推荐
- element 表单的input循环生成,并可单个input失去焦点单个验证并保存; (多个表单实例)
<div class="box_item"> <el-form ref="aList" :model="form" :ru ...
- SpringBoot非官方教程 | 第十六篇:用restTemplate消费服务
转载请标明出处: 原文首发于:https://www.fangzhipeng.com/springboot/2017/07/11/springboot11-restTemplate/ 本文出自方志朋的 ...
- TIDB4 —— 三篇文章了解 TiDB 技术内幕 - 谈调度
原文地址:https://pingcap.com/blog-cn/tidb-internal-3/ 为什么要进行调度 先回忆一下第一篇文章提到的一些信息,TiKV 集群是 TiDB 数据库的分布式 K ...
- vue.js中的slot
vue.js 中的 slot 一.slot 的作用 调用组件的时候,对于数据,我们会用props将数据从父组件传至子组件.但是,如果从父组件到子组件,单纯是页面局部渲染的改变,slot会更合适. 二. ...
- Configuration 中无法自动注入依赖于component的bean
出现问题时我这样使用依赖注入 @Configuration public class WebServiceConfig { @Autowired private IMessageWebService ...
- Hadoop(4)-Hadoop集群环境搭建
准备工作 开启全部三台虚拟机,确保hadoop100的机器已经配置完成 分发脚本 操作hadoop100 新建一个xsync的脚本文件,将下面的脚本复制进去 vim xsync #这个脚本使用的是rs ...
- Element-ui学习使用
这是我使用Element-ui的布局,排布的一个界面,原本我是使用WinfowsForm来做的一个摄像头注册以及查询的小工具,目前我关注前后端的开发,所以就想着能不能把这么个小工具,我用前后端的形式开 ...
- go学习笔记-Data类型(Arrays, Slices and Maps)
Data类型(Arrays, Slices and Maps) array array就是数组,定义方式如下: var arr [n]type 在[n]type中,n表示数组的长度,type表示存储元 ...
- (数据科学学习手札33)基于Python的网络数据采集实战(1)
一.简介 前面两篇文章我们围绕利用Python进行网络数据采集铺垫了很多内容,但光说不练是不行的,于是乎,本篇就将基于笔者最近的一项数据需求进行一次网络数据采集的实战: 二.网易财经股票数据爬虫实战 ...
- R语言绘图:在地图上绘制散点图
使用ggplot2在地图上绘制散点图 ######*****绘制散点图代码*****####### options(baidumap.key = '**************') #设置密钥 bei ...