URAL 1932 The Secret of Identifier(容斥)
Description
Input
Output
题目大意:给n个字符串,每个字符串有4个字符(其实是4位16进制数),输出这些字符串中有1位不同的字符串个数、有2位不同的字符串个数、有3位不同的字符串个数、有4位不同的字符串个数.
思路:用一个数组sum[i][j]存下在状态 i 下 j 的出现次数,如sum[3][244]就代表XXF4的出现次数:其中3是二进制的0011,代表是计算最后两位的出现次数,前面两位为任意字符;F4(10进制为244)则为后两位为F4的字符串的出现次数;XX为任意字符。
那么,扫一遍,统计一下,就能知道:一个字符相同的对数、两个字符相同的对数、三个字符相同的对数。注意,这样算的时候,如aaaa和aaab,这个一个字符相同的对数是算了3遍的,所以要减回去。
至于怎么减回去大概可以用容斥原理,我写的那些其实是我自己YY的,我不会容斥o(╯□╰)o
代码(62MS):
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
typedef long long LL; LL sum[][ << ];
char s[];
int n, maxl; inline int trans(char c) {
if(isdigit(c)) return c - '';
return c - 'a' + ;
} void init() {
for(int p = ; p < n; ++p) {
scanf("%s", &s[]);
for(int i = ; i <= ; ++i) {
int t = ;
if(i&) t += trans(s[]) * (<<);
if(i&) t += trans(s[]) * (<<);
if(i&) t += trans(s[]) * (<<);
if(i&) t += trans(s[]);
++sum[i][t];
maxl = max(maxl, t);
}
}
} LL ans[], tmp[]; inline int bit_count(int x) {
int ret = ;
while(x > ) ret += (x & ), x >>= ;
return ret;
} void solve() {
for(int i = ; i <= ; ++i) {
int x = bit_count(i);
for(int j = ; j <= maxl; ++j) tmp[x] += sum[i][j] * (sum[i][j] - ) / ;
}
ans[] = tmp[];//1位不同=3位相同
ans[] = tmp[] - * tmp[];
ans[] = tmp[] - * tmp[] + * tmp[];
ans[] = LL(n - ) * n / - ans[] - ans[] - ans[];
cout<<ans[]<<' '<<ans[]<<' '<<ans[]<<' '<<ans[]<<endl;
} int main() {
scanf("%d", &n);
init();
solve();
}
URAL 1932 The Secret of Identifier(容斥)的更多相关文章
- ural 1932 The Secret of Identifier 容斥
主题链接:点击打开链接 stl+容斥 #include <cstdio> #include <cstring> #include <algorithm> #incl ...
- URAL 1932 The Secret of Identifier 题解
http://acm.timus.ru/problem.aspx?space=1&num=1932 B - The Secret of Identifier Time Limit:1000MS ...
- ural 1932 The Secret of Identifier (容斥原理)
标题效果: 计算到n字符串. 精确到只是有一个不同的字符,两个不同的字符.三个不同的字符,四对不同的字符. IDEAS: 枚举状态. dp[i] [j] ...当前串取出 i 状态下的全部字符转化成十 ...
- Tmutarakan Exams URAL - 1091(莫比乌斯函数 || 容斥)
题意: 求1 - s 中 找出k个数 使它们的gcd > 1 求这样的k个数的对数 解析: 从每个素数的倍数中取k个数 求方案数 然后素数组合,容斥一下重的 奇加偶减 莫比乌斯函数的直接套模 ...
- HDU 5514 Frogs 容斥定理
Frogs Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5514 De ...
- hdu 5514 Frogs(容斥)
Frogs Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- hdu 5514 Frogs 容斥思想+gcd 银牌题
Frogs Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submi ...
- Lucky HDU - 5213 (莫队,容斥)
WLD is always very lucky.His secret is a lucky number . is a fixed odd number. Now he meets a strang ...
- POJ1091跳蚤(容斥 + 唯一分解 + 快速幂)
题意:规定每次跳的单位 a1, a2, a3 …… , an, M,次数可以为b1, b2, b3 …… bn, bn + 1, 正好表示往左,负号表示往右, 求能否调到左边一位,即 a1* b1 ...
随机推荐
- neo4j 安装步骤 转自:http://blog.csdn.net/luoluowushengmimi/article/details/19987995
1. Neo4j简介 Neo4j是一个用Java实现的.高性能的.NoSQL图形数据库.Neo4j 使用图(graph)相关的概念来描述数据模型,通过图中的节点和节点的关系来建模.Neo4j完全兼容A ...
- 复制功能 js
示例: <input class="herf" type="text" v-model="herfUrl" readonly=&quo ...
- Spring技术内幕阅读笔记(一)
1.BeanFactory:实现ioc容器的最基本形式.String FACTORY_BEAN_PREFIX = "&";Object getBean(String var ...
- JAVA面向对象思想理解分析
1.面向对象是面向过程而言.两者都是一种思想.面向过程:强调的是功能行为.(强调过程.动作)面向对象:将功能封装进对象,强调了具备了功能的对象.(强调对象.事物)面向对象是基于面向过程的.将复杂的事情 ...
- C++最接近整数的浮点运算
Function return ceil 不小于给定值的最接近整数值 floor 不大于给定值的最接近整数 trunc (C++11) 绝对值不大于给定值的最接近整数 round(C++11) 最接近 ...
- fjutacm 3700 这是一道数论题 : dijkstra O(mlogn) 二进制分类 O(k) 总复杂度 O(k * m * logn)
/** problem: http://www.fjutacm.com/Problem.jsp?pid=3700 按二进制将k个待查点分类分别跑dijkstra **/ #include<std ...
- 通过xshell在linux上安装redis3.0.0
通过xshell在linux上安装redis3.0.0 0)首先要安装环境:yum install gcc-c++ 1)通过xftp6将redis安装包上传到linux:解压缩:tar -xvfz r ...
- 使用Python操作Office——EXCEL
首先介绍下office win32 com接口,这个是MS为自动化提供的操作接口,比如我们打开一个EXCEL文档,就可以在里面编辑VB脚本,实现我们自己的效果.对于这种一本万利的买卖,Python怎么 ...
- 为何要搭建ES6开发环境,如何搭建ES6开发环境?
1.ES6需要搭建开发环境,原因是现在的Chrome浏览器已经支持ES6了,但是有些低版本的浏览器还是不支持ES6语法的,这就需要我们把ES6的语法自动转变成ES5的语法. 2.开始搭建环境 ...
- Yaf学习(三)----Yaf类库Library和Model的命名规则
1.Yaf的library和model的文件命名规则和调用 1.1在项目中,往往需要封装一些,如redis,不同的产品需要用不同的库等等等,这就涉及到封装 1.在 Yaf 中,我们可以写一个单例模式的 ...