bzoj3597 方伯伯运椰子
有一个 DAG,有一个源点,一个汇点和很多条边,每条边有花费 $d_i$ 和最大流量 $c_i$,可以花 $b_i$ 的钱把最大流量增加 $1$,花 $a_i$ 的钱把最大流量减少 $1$
现在要进行调整,要求每条边都满流且总流量不变,假设进行了 $k$ 次调整,要求最大化 $\frac{调整前总费用 - 调整费用 - 调整后总费用}{k}$
sol:
肯定是分数规划
然后发现"减少最大容量"这件事不是很好搞,于是想到先把它全减了再反悔
这样对于原图每条边,我们要建两条边分别表示增加流量,和对减少流量的反悔
假设当前二分的答案是 mid
对于增加的边,显然上限是 inf(没有规定最多加多少),费用是 $d_i + mid + b_i$
对于反悔的边,上限是 c ,费用是 $d_i - mid - a_i$
由于要满流,要跑最小费用最大流,由于建边方式比较特殊,最后费用其实是 $c_i \times (mid + a_i) + ans$
bzoj3597 方伯伯运椰子的更多相关文章
- 【BZOJ3597】方伯伯运椰子(分数规划,网络流)
[BZOJ3597]方伯伯运椰子(分数规划,网络流) 题解 给定了一个满流的费用流模型 如果要修改一条边,那么就必须满足流量平衡 也就是会修改一条某两点之间的路径上的所有边 同时还有另外一条路径会进行 ...
- bzoj3597[Scoi2014]方伯伯运椰子 01分数规划+spfa判负环
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 594 Solved: 360[Submit][Statu ...
- bzoj 3597: [Scoi2014]方伯伯运椰子 0/1分数规划
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 144 Solved: 78[Submit][Status ...
- bzoj 3597: [Scoi2014]方伯伯运椰子 [01分数规划 消圈定理 spfa负环]
3597: [Scoi2014]方伯伯运椰子 题意: from mhy12345 给你一个满流网络,对于每一条边,压缩容量1 需要费用ai,扩展容量1 需要bi, 当前容量上限ci,每单位通过该边花费 ...
- 「SCOI2014」方伯伯运椰子 解题报告
「SCOI2014」方伯伯运椰子 可以看出是分数规划 然后我们可以看出其实只需要改变1的流量就可以了,因为每次改变要保证流量守恒,必须流成一个环,在正负性确定的情况下,变几次是无所谓的. 然后按照套路 ...
- 3597: [Scoi2014]方伯伯运椰子[分数规划]
3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec Memory Limit: 64 MB Submit: 404 Solved: 249 [Submit][Sta ...
- BZOJ3597 SCOI2014方伯伯运椰子(分数规划+spfa)
即在总流量不变的情况下调整每条边的流量.显然先二分答案变为求最小费用.容易想到直接流量清空跑费用流,但复杂度略有些高. 首先需要知道(不知道也行?)一种平时基本不用的求最小费用流的算法——消圈法.算法 ...
- BZOJ3597 [Scoi2014]方伯伯运椰子 【二分 + 判负环】
题目链接 BZOJ3597 题解 orz一眼过去一点思路都没有 既然是流量网络,就要借鉴网络流的思想了 我们先处理一下那个比值,显然是一个分数规划,我们二分一个\(\lambda = \frac{X ...
- 2019.03.28 bzoj3597: [Scoi2014]方伯伯运椰子(01分数规划)
传送门 题意咕咕咕有点麻烦不想写 思路: 考虑加了多少一定要压缩多少,这样可以改造边. 于是可以通过分数规划+spfaspfaspfa解决. 代码: #include<bits/stdc++.h ...
随机推荐
- 前端基础之JavaScript_(2)_BOM对象
BOM对象 window对象 所有浏览器都支持 window 对象.概念上讲.一个html文档对应一个window对象.功能上讲: 控制浏览器窗口的.使用上讲: window对象不需要创建对象,直接使 ...
- windows下客户端开发hdf--环境搭建
1.引入依赖 <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop- ...
- 17南宁区域赛 I - Rake It In 【DFS】
题目链接 https://nanti.jisuanke.com/t/19975 题意 Alice 和 Bob 玩游戏 在一个4x4 的方格上 每个人 每次选择2x2的区域 将里面的四个值求和加到最后的 ...
- php token 生成
php token的生成 接口特点汇总: 1.因为是非开放性的,所以所有的接口都是封闭的,只对公司内部的产品有效: 2.因为是非开放性的,所以OAuth那套协议是行不通的,因为没有中间用户的授权过 ...
- 【Topcoder】SRM157 DIV2总结
250分题:简单的二分,就是平常玩的猜数字游戏 代码:GitHub 500分题:给出一个员工一天的打卡时间段,要求求出员工这一天的工资.其中正常上班时间是6:00:00到18:00:00,薪水是wag ...
- 使用JDK将tomcat变成https访问
1,今日JDK目录,执行命令 keytool -genkeypair -alias "tomcat" -keyalg "RSA" -keystore " ...
- usb mtp激活流程【转】
本文转载自:https://blog.csdn.net/kc58236582/article/details/46895901 废话少说, 先上两张时序图 , 图片有点大, 建议用新窗口打开或者另存到 ...
- eclipse maven 项目 maven build 无反应
eclipse maven 项目 使用maven build ,clean 等命令均无反应,控制台无任何输出 1.打开Window --> Preferences --> Java --& ...
- Start and Use the Database Engine Tuning Advisor
https://docs.microsoft.com/en-us/sql/relational-databases/performance/start-and-use-the-database-eng ...
- Luogu-4774 [NOI2018]屠龙勇士
这题好像只要会用set/平衡树以及裸的\(Excrt\)就能A啊...然而当时我虽然看出是\(Excrt\)却并不会...今天又学了一遍\(Excrt\),趁机把这个坑给填了吧 现预处理一下,找出每条 ...