线程锁、threading.local(flask源码中用的到)、线程池、生产者消费者模型
一、线程锁
线程安全,多线程操作时,内部会让所有线程排队处理。如:list/dict/Queue
线程不安全 + 人(锁) => 排队处理
1、RLock/Lock:一次放一个
a、创建10个线程,在列表中追加自己,如下代码:
import threading
v = []
def func(arg):
v.append(arg)
print(v)
for i in range(10):
t = threading.Thread(target=func, args=(i,))
t.start()
b、创建10个线程,把自己添加到列表中,再读取列表的最后一个,如下代码:
import threading
import time v = []
lock = threading.Lock() def func(arg):
lock.acquire() # 加锁
v.append(arg)
time.sleep(0.01)
m = v[-1]
print(arg,m)
lock.release() # 释放锁 for i in range(10):
t = threading.Thread(target=func, args=(i,))
t.start()
注意:RLock和Lock用法一样,只是Lock只能锁一次解一次,RLock支持锁多次解多次,以后用RLock。
2、BoundedSemaphore(n) ,信号量, 一次放n个,如下代码:
import threading
import time lock = threading.BoundedSemaphore(3) def func(arg):
lock.acquire() # 加锁
time.sleep(1)
print(arg)
lock.release() # 释放锁 for i in range(10):
t = threading.Thread(target=func, args=(i,))
t.start()
3、condition(),一次放x个,x可由用户动态输入,代码如下:
1)方式一:
import time
import threading lock = threading.Condition() def func(arg):
print('线程进来了')
lock.acquire()
lock.wait() # 加锁
print(arg)
time.sleep(1)
lock.release() for i in range(10):
t =threading.Thread(target=func,args=(i,))
t.start() while True:
inp = int(input('>>>'))
lock.acquire()
lock.notify(inp)
lock.release()
2)方式二:
import time
import threading lock = threading.Condition()
def f1():
print('来执行函数了')
input(">>>")
return True def func(arg):
print('线程进来了')
lock.wait_for(f1) # 等函数f1执行完毕后继续往下走
print(arg)
time.sleep(1) for i in range(10):
t =threading.Thread(target=func,args=(i,))
t.start()
4、Event,一次放所有,如下示例:
import threading
lock = threading.Event()
def func(arg):
print('线程来了')
lock.wait() # 加锁:红灯
print(arg)
for i in range(10):
t =threading.Thread(target=func,args=(i,))
t.start()
input(">>>")
lock.set() # 绿灯
lock.clear() # 再次变红灯
for i in range(10):
t =threading.Thread(target=func,args=(i,))
t.start()
input(">>>")
lock.set()
总结:
线程安全,列表和字典线程安全;
为什么要加锁? 非线程安全,控制一段代码;
二、threading.local()
作用:内部自动为每个线程维护一个空间(本质是字典),用于当前线程存取属于自己的值,保证线程之间的数据隔离。
{
线程ID : { . . . },
线程ID : { . . . },
线程ID : { . . . },
线程ID : { . . . },
}
"""
以后:Flask框架内部看到源码 上下文管理 """
import time
import threading
INFO = {}
class Local(object):
def __getattr__(self, item):
ident = threading.get_ident()
return INFO[ident][item] def __setattr__(self, key, value):
ident = threading.get_ident()
if ident in INFO:
INFO[ident][key] = value
else:
INFO[ident] = {key:value} obj = Local() def func(arg):
obj.phone = arg # 调用对象的 __setattr__方法(“phone”,1)
time.sleep(2)
print(obj.phone,arg) for i in range(10):
t =threading.Thread(target=func,args=(i,))
t.start()
threading.local()的原理:
import threading
import time v = threading.local() def func(arg):
v.phone = arg # 内部会为当前线程创建一个空间用于存储:phone = 自己的值
time.sleep(2)
print(v.phone,arg) # 去当前线程自己空间取值 for i in range(10):
t = threading.Thread(target=func, args=(i,))
t.start()
threading.local()的使用:
三、线程池
以后写代码不要一个一个创建线程,而是创建一个线程池,再去线程池申请线程去执行任务,如下示例:
from concurrent.futures import ThreadPoolExecutor
import time def task(a1,a2):
time.sleep(2)
print(a1,a2) # 创建了一个线程池(最多5个线程)
pool = ThreadPoolExecutor(5) for i in range(40):
# 去线程池中申请一个线程,让线程执行task函数。
pool.submit(task,i,8)
四、生产者消费者模型
三部分:生产者,消费者,队列
队列:先进先出
栈:后进先出
问题1:生产者消费者模型解决了什么问题?不用一直等待的问题。如下示例:
import time
import queue
import threading
q = queue.Queue() # 线程安全 def producer(id):
"""
生产者
:return:
"""
while True:
time.sleep(2)
q.put('包子')
print('厨师%s 生产了一个包子' %id ) for i in range(1,4):
t = threading.Thread(target=producer,args=(i,))
t.start() def consumer(id):
"""
消费者
:return:
"""
while True:
time.sleep(1)
v = q.get()
print('顾客 %s 吃了一个%s' % (id,v)) for i in range(1,3):
t = threading.Thread(target=consumer,args=(i,))
t.start()
五、面向对象补充(了解,以后不会写,flask源码中会遇到)
class Foo(object):
def __init__(self):
self.name = 'alex'
def __setattr__(self, key, value):
print(key,value)
obj = Foo() # 结果为:name alex (说明执行了Foo的__setattr__方法)
# 分析:因为obj.x自动执行__setattr__
print(obj.name) # 报错
# 分析:__setattr__方法中没有设置的操作,只有打印
示例一:
class Foo(object):
def __init__(self):
object.__setattr__(self, 'info', {}) # 在对象中设置值的本质
def __setattr__(self, key, value):
self.info[key] = value
def __getattr__(self, item):
return self.info[item]
obj = Foo()
obj.name = 'alex'
print(obj.name)
示例二:
线程锁、threading.local(flask源码中用的到)、线程池、生产者消费者模型的更多相关文章
- 线程锁,threadinglocal,线程池,生产者消费者模型
1.线程锁 1.锁Lock(只能锁一次) import threading import time v = [] lock = threading.Lock() def func(arg): lock ...
- 4、网络并发编程--僵尸进程、孤儿进程、守护进程、互斥锁、消息队列、IPC机制、生产者消费者模型、线程理论与实操
昨日内容回顾 操作系统发展史 1.穿孔卡片 CPU利用率极低 2.联机批处理系统 CPU效率有所提升 3.脱机批处理系统 CPU效率极大提升(现代计算机雏形) 多道技术(单核CPU) 串行:多个任务依 ...
- 第23章 java线程通信——生产者/消费者模型案例
第23章 java线程通信--生产者/消费者模型案例 1.案例: package com.rocco; /** * 生产者消费者问题,涉及到几个类 * 第一,这个问题本身就是一个类,即主类 * 第二, ...
- flask 源码专题(十一):LocalStack和Local对象实现栈的管理
目录 04 LocalStack和Local对象实现栈的管理 1.源码入口 1. flask源码关于local的实现 2. flask源码关于localstack的实现 3. 总结 04 LocalS ...
- 04 flask源码剖析之LocalStack和Local对象实现栈的管理
04 LocalStack和Local对象实现栈的管理 目录 04 LocalStack和Local对象实现栈的管理 1.源码入口 1. flask源码关于local的实现 2. flask源码关于l ...
- Flask源码关于local的实现
flask源码关于local的实现 try: # 协程 from greenlet import getcurrent as get_ident except ImportError: try: fr ...
- 锁丶threading.local丶线程池丶生产者消费者模型
一丶锁 线程安全: 线程安全能够保证多个线程同时执行时程序依旧运行正确, 而且要保证对于共享的数据,可以由多个线程存取,但是同一时刻只能有一个线程进行存取. import threading v = ...
- 用尽洪荒之力学习Flask源码
WSGIapp.run()werkzeug@app.route('/')ContextLocalLocalStackLocalProxyContext CreateStack pushStack po ...
- Flask 源码流程,上下文管理
源码流程 创建对象 from flask import Flask """ 1 实例化对象 app """ app = Flask(__na ...
随机推荐
- node.js零基础详细教程(1):安装+基础概念
第一章 建议学习时间2小时 课程共10章 学习方式:详细阅读,并手动实现相关代码 学习目标:此教程将教会大家 安装Node.搭建服务器.express.mysql.mongodb.编写后台业务逻辑. ...
- ExtjS学习--------Ext.define定义类
Ext类Class的配置项:(注:Extjs的 的中文版帮助文档下载地址:http://download.csdn.net/detail/z1137730824/7748893 ExtJS配置文件和演 ...
- osx升级到10.10后,用pod install报错终于解决的方法
先依照这个文章做:http://blog.csdn.net/dqjyong/article/details/37958067 大概过程例如以下: Open Xcode 6 Open Preferenc ...
- C++语言基础(12)-虚函数
一.虚函数使用的注意事项 1.只需要在虚函数的声明处加上 virtual 关键字,函数定义处可以加也可以不加. 2.为了方便,你可以只将基类中的函数声明为虚函数,这样所有子类中具有遮蔽(覆盖)关系的同 ...
- 指尖上的电商---(11)Windows平台部署SolrCloud
SolrCloud是一种分布式解决方式,是基于zookeeper和solr的,能够简单理解为一种集群,能够提供分布式查询.分布式写索引. SolrCloud的结构大致是这种,一个SolrCloud包含 ...
- IOS设计模式浅析之抽象工厂模式(Abstract Factory)
概述 在前面两章中,分别介绍了简单工厂模式和工厂方法模式,我们知道简单工厂模式的优点是去除了客户端与具体产品的依赖,缺点是违反了“开放-关闭原则”:工厂方法模式克服了简单工厂模式的缺点,将产品的创建工 ...
- 椭圆曲线ECC基本概念
椭圆曲线的曲线方程是以下形式的三次方程: y2+axy+by=x3+cx2+dx+e a,b,c,d,e是满足某些简单条件的实数.定义中包含一个称为无穷点的元素,记为O 如果其上的3个点位于同一直线上 ...
- redis 底层数据结构 压缩列表 ziplist
压缩列表是列表键和哈希键的底层实现之一.当一个列表键只包含少量列表项,并且每个列表项要么就是小整数,要么就是长度比较短的字符串,redis就会使用压缩列表来做列表键的底层实现 当一个哈希键只包含少量键 ...
- selenium + js 处理窗口
1.隐藏页面的广告窗口 document.getElementById("top_left").style.display="none"; 2.隐藏控件点击 d ...
- kafka 集群--3个broker 3个zookeeper创建实战
准备工作: 1. 准备3台机器,IP地址分别为:192.168.0.10,192.168.0.11,192.168.0.12 2. 下载kafka稳定版本,我的版本为:kafka_2.9.2-0.8. ...