一:如何判断调参范围是否合理

正常来说,当我们参数在合理范围时,模型在训练集和测试集的准确率都比较高;当模型在训练集上准确率比较高,而测试集上的准确率比较低时,模型处于过拟合状态;当模型训练集和测试集上准确率都比较低,模型处于欠拟合状态。正常来说测试集上的准确率都会比训练集要低。

二:如何确定参数的调节方向

当使用线性支持向量机时,我们只需调节正则化参数C的范围即可。

这里我们以RBF作为核的SVM为例,这时候我们需要调节的参数是正则化参数C核函数参数gamma。为了保证调参的精确度,一般我们都使用网格搜索法来确定参数。

网格搜索法就是给出各个参数的调节范围调节步长,计算出每个参数的可能取值,然后遍历所有的组合情况,返回最佳的参数值。
C和gamma的有效范围是:10-8~108

C表示模型对误差的惩罚系数,gamma反映了数据映射到高维特征空间后的分布;C越大,模型越容易过拟合;C越小,模型越容易欠拟合。gamma越大,支持向量越多,gamma值越小,支持向量越少。gamma越小,模型的泛化性变好,但过小,模型实际上会退化为线性模型;gamma越大,理论上SVM可以拟合任何非线性数据。
为维持模型在过拟合和欠拟合之间的平衡,往往最佳的参数范围是C比较大,gamma比较小;或者C比较小,gamma比较大。也就是说当模型欠拟合时,我们需要增大C或者增大gamma,不能同时增加,调节后如果模型过拟合,我们又很难判断是C过大了,还是gamma过大了;同理,模型欠拟合的时候,我们需要减小C或者减小gamma。

三:设置合理的调参起始点
因为SVM本身是一个非线性模型,调参的时候根据项目的不同,每一次都是从头开始的。如果想把上一个项目调好的参数套用到下一个项目上,往往没什么效果。正常情况下,我们都会先设置C和gamma的值在0.1~10之间,然后在根据模型的表现,每次乘以0.1或者10作为一个步长,当确定大致范围后,再细化搜索区间。

转自https://www.douban.com/note/636383152/

SVM模型进行分类预测时的参数调整技巧的更多相关文章

  1. 解决kettle在两个mysql之间迁移数据时乱码的问题 和 相关报错 及参数调整, 速度优化

    1. 乱码问题 编辑目标数据库的链接: 配置编码参数即可. 2. 报错 No operations allowed after statement closed. 需要调整wait_timeout:  ...

  2. 基于SKLearn的SVM模型垃圾邮件分类——代码实现及优化

    一. 前言 由于最近有一个邮件分类的工作需要完成,研究了一下基于SVM的垃圾邮件分类模型.参照这位作者的思路(https://blog.csdn.net/qq_40186809/article/det ...

  3. XGBoost中参数调整的完整指南(包含Python中的代码)

    (搬运)XGBoost中参数调整的完整指南(包含Python中的代码) AARSHAY JAIN, 2016年3月1日     介绍 如果事情不适合预测建模,请使用XGboost.XGBoost算法已 ...

  4. 吴裕雄 数据挖掘与分析案例实战(12)——SVM模型的应用

    import pandas as pd # 导入第三方模块from sklearn import svmfrom sklearn import model_selectionfrom sklearn ...

  5. caffe训练自己的图片进行分类预测--windows平台

    caffe训练自己的图片进行分类预测 标签: caffe预测 2017-03-08 21:17 273人阅读 评论(0) 收藏 举报  分类: caffe之旅(4)  版权声明:本文为博主原创文章,未 ...

  6. R语言利用ROCR评测模型的预测能力

    R语言利用ROCR评测模型的预测能力 说明 受试者工作特征曲线(ROC),这是一种常用的二元分类系统性能展示图形,在曲线上分别标注了不同切点的真正率与假正率.我们通常会基于ROC曲线计算处于曲线下方的 ...

  7. TensorFlow实现超参数调整

    TensorFlow实现超参数调整 正如你目前所看到的,神经网络的性能非常依赖超参数.因此,了解这些参数如何影响网络变得至关重要. 常见的超参数是学习率.正则化器.正则化系数.隐藏层的维数.初始权重值 ...

  8. Galera集群server.cnf参数调整--Innodb存储引擎内存相关参数(一)

    在innodb引擎中,内存的组成主要有三部分:缓冲池(buffer pool),重做日志缓存(redo log buffer),额外的内存池(additional memory pool).

  9. Galera集群server.cnf参数调整--前言

    文档安排: 前言部分会简述下galera集群,正文中会针对我们线上的环境,在不断业务的情况下,进行参数调整的话,有些参数不能够进行配置,会以#***的形式写入配置文件中,文档也会进行进一步说明. 如果 ...

随机推荐

  1. 每天一个Linux命令(39)free命令

    free命令可以显示当前系统未使用的和已使用的内存数目,还可以显示被内核使用的内存缓冲区.       (1)用法:       用法:  free  [选项参数]       (2)功能:     ...

  2. 方法——<37>

    1,返回url参数 /* * 返回参数值 * @method getUrlPara * @papram {string},url中参数名 * @return {string},url中参数值 * */ ...

  3. 【HackerRank】Utopian tree

    The Utopian tree goes through 2 cycles of growth every year. The first growth cycle of the tree occu ...

  4. 活用:after 让图片垂直居中

    现在莫名虽然更喜欢 background 但大多时候还是选择用 img,这其中的利弊争议不在本文中赘述. 那么在布局中常会遇到定高容器中图片居中的需求,这时就有很多方法了呀: line-height ...

  5. 前端之HTML基础

    一.初识HTML 1.web服务的本质 方式一:服务端 import socket def main(): sock = socket.socket(socket.AF_INET, socket.SO ...

  6. Qt如何重写虚函数

    eg:QWidget的有个虚函数,KeyPressEvent,当它的子类获得焦点的时候,如果有任何按键按下,就会触发这个虚函数. 1.在mainwindow.h中声明此虚函数 protected:vo ...

  7. FTH: (7156): *** Fault tolerant heap shim applied to current process. This is usually due to previous crashes. ***

    这两天在Qtcreator上编译程序的时候莫名其妙的出现了FTH: (7156): *** Fault tolerant heap shim applied to current process. T ...

  8. 各种排序算法-用Python实现

    冒泡排序 # 冒泡排序 def bubble_sort(l): length = len(l) # 外层循环 length遍,内层循环少一遍 while length: for j in range( ...

  9. springmvc拦截器基本使用

    1.HandlerExecutionChain是一个执行链,当用户的请求到达DispatcherServlet的时候,DispatcherServlet会到HandlerMapping中查找对应的Ha ...

  10. 关于 Java正则表达式中的Possessive数量修饰词的理解

    关于 Java正则表达式中的Possessive数量修饰词的理解 正则表达式对于数量限定符如 ?, + , *, {n, m} 的匹配默认是贪婪模式,比如: a.*b   匹配 acbab 的结果是 ...