Layout

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 15705   Accepted: 7551

题目链接:http://poj.org/problem?id=3169

Description:

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input:

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output:

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input:

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output:

27

Hint:

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

题意:

有n只牛,之后给出m个关系x,y,z满足x号牛和y号牛相距不超过z,之后还会有k个关系x,y,z满足x,y相距至少为z。

现在问1号牛和n号牛最大的距离可能是多少,如果此最大值不存在,输出-1;如若这个最大值有无穷多个,则输出-2。

题解:

就是个差分约束模板题,建个图跑一跑就好了。注意一下最后输出的顺序。

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
#define INF 9999999999999999
using namespace std;
typedef long long ll;
const int N = ,M = ;
ll d[N];
int vis[N],head[N],c[N];
int n,ml,md;
struct Edge{
int u,v,w,next;
}e[M<<];
int tot;
void adde(int u,int v,int w){
e[tot].u=u;e[tot].v=v;e[tot].w=w;e[tot].next=head[u];head[u]=tot++;
}
ll spfa(int s){
queue <int> q;
for(int i=;i<=n;i++) d[i]=INF;
q.push(s);vis[s]=;d[]=;c[]=;
while(!q.empty()){
int u=q.front();q.pop();vis[u]=;
if(c[u]>n) return -;
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].v;
if(d[v]>=d[u]+e[i].w){
d[v]=d[u]+e[i].w;
if(!vis[v]){
vis[v]=;
q.push(v);
c[v]++;
}
}
}
}
return d[n];
}
int main(){
cin>>n>>ml>>md;
memset(head,-,sizeof(head));
for(int i=;i<=ml;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
adde(u,v,w);
}
for(int i=;i<=md;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
adde(v,u,-w);
}
ll flag = spfa();
if(flag==INF){
cout<<-;
return ;
}
else if(flag==-) cout<<-;
else cout<<d[n];
return ;
}

POJ3169:Layout(差分约束)的更多相关文章

  1. POJ-3169 Layout (差分约束+SPFA)

    POJ-3169 Layout:http://poj.org/problem?id=3169 参考:https://blog.csdn.net/islittlehappy/article/detail ...

  2. POJ3169:Layout(差分约束)

    http://poj.org/problem?id=3169 题意: 一堆牛在一条直线上按编号站队,在同一位置可以有多头牛并列站在一起,但编号小的牛所占的位置不能超过编号大的牛所占的位置,这里用d[i ...

  3. POJ3169 Layout(差分约束系统)

    POJ3169 Layout 题意: n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有ml组(u, v, w)的约束关系,表示牛 ...

  4. POJ 3169 Layout(差分约束+链式前向星+SPFA)

    描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

  5. POJ 3169 Layout (差分约束)

    题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个, ...

  6. poj Layout 差分约束+SPFA

    题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...

  7. poj 3169 Layout 差分约束模板题

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6415   Accepted: 3098 Descriptio ...

  8. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  9. POJ 3169 Layout(差分约束 线性差分约束)

    题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...

  10. Bellman-Ford算法:POJ No.3169 Layout 差分约束

    #define _CRT_SECURE_NO_WARNINGS /* 4 2 1 1 3 10 2 4 20 2 3 3 */ #include <iostream> #include & ...

随机推荐

  1. 2.从print到自省

    print是一个函数   为什么print是一个函数呢?可以在交互式解释器下 输入: >>> type(print) 输出: <class 'builtin_function_ ...

  2. Python自动化运维——IP地址处理模块

    Infi-chu: http://www.cnblogs.com/Infi-chu/ 模块:IPy 功能:辅助我们高效的完成IP的规划工作 安装: wget https://pypi.python.o ...

  3. h5调试工具

    1.Safari:iPhone 调试利器,查错改样式首选: 2.iOS 模拟器:不需要真机,适合调试 Webview 和 H5 有频繁交互的功能页面: 3.Charles: Mac OS 系统首选的抓 ...

  4. 20145202马超《网络对抗》Exp4 恶意代码分析

    20145202马超<网络对抗>Exp4 恶意代码分析 1.实验后回答问题 (1)总结一下监控一个系统通常需要监控什么.用什么来监控. 虽然这次试验的软件很好用,我承认,但是他拖慢了电脑的 ...

  5. dfs Gym - 100989L

    AbdelKader enjoys math. He feels very frustrated whenever he sees an incorrect equation and so he tr ...

  6. samba与apache配置使用

    samba与apache根目录 1.直接将apache用户作为samba用户 2.给apache用户赋宇网站根目录的acl rwx权限 #注意 第一次不要加默认的权限 setfacl -m u:apa ...

  7. runtime总结 iOS

    Runtime的特性主要是消息(方法)传递,如果消息(方法)在对象中找不到,就进行转发,具体怎么实现的呢.我们从下面几个方面探寻Runtime的实现机制. Runtime介绍 Runtime消息传递 ...

  8. Unity3d工具方法小集

    1.获取垂直水平方向上的输入: float moveHorizontal = Input.GetAxis("Horizontal"); float moveVertical = I ...

  9. 关于Vue脚手架写法的问题

    问题描述: main.js import Vue from 'vue' import App from './App' /* eslint-disable no-new */ new Vue({ el ...

  10. UVA 11883 Repairing a Road(最短路径+暴力枚举)

    You live in a small town with R bidirectional roads connecting C crossings and you want to go from c ...