Layout

Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 15705   Accepted: 7551

题目链接:http://poj.org/problem?id=3169

Description:

Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 <= N <= 1,000) cows numbered 1..N standing along a straight line waiting for feed. The cows are standing in the same order as they are numbered, and since they can be rather pushy, it is possible that two or more cows can line up at exactly the same location (that is, if we think of each cow as being located at some coordinate on a number line, then it is possible for two or more cows to share the same coordinate).

Some cows like each other and want to be within a certain distance of each other in line. Some really dislike each other and want to be separated by at least a certain distance. A list of ML (1 <= ML <= 10,000) constraints describes which cows like each other and the maximum distance by which they may be separated; a subsequent list of MD constraints (1 <= MD <= 10,000) tells which cows dislike each other and the minimum distance by which they must be separated.

Your job is to compute, if possible, the maximum possible distance between cow 1 and cow N that satisfies the distance constraints.

Input:

Line 1: Three space-separated integers: N, ML, and MD.

Lines 2..ML+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at most D (1 <= D <= 1,000,000) apart.

Lines ML+2..ML+MD+1: Each line contains three space-separated positive integers: A, B, and D, with 1 <= A < B <= N. Cows A and B must be at least D (1 <= D <= 1,000,000) apart.

Output:

Line 1: A single integer. If no line-up is possible, output -1. If cows 1 and N can be arbitrarily far apart, output -2. Otherwise output the greatest possible distance between cows 1 and N.

Sample Input:

4 2 1
1 3 10
2 4 20
2 3 3

Sample Output:

27

Hint:

Explanation of the sample:

There are 4 cows. Cows #1 and #3 must be no more than 10 units apart, cows #2 and #4 must be no more than 20 units apart, and cows #2 and #3 dislike each other and must be no fewer than 3 units apart.

The best layout, in terms of coordinates on a number line, is to put cow #1 at 0, cow #2 at 7, cow #3 at 10, and cow #4 at 27.

题意:

有n只牛,之后给出m个关系x,y,z满足x号牛和y号牛相距不超过z,之后还会有k个关系x,y,z满足x,y相距至少为z。

现在问1号牛和n号牛最大的距离可能是多少,如果此最大值不存在,输出-1;如若这个最大值有无穷多个,则输出-2。

题解:

就是个差分约束模板题,建个图跑一跑就好了。注意一下最后输出的顺序。

代码如下:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
#define INF 9999999999999999
using namespace std;
typedef long long ll;
const int N = ,M = ;
ll d[N];
int vis[N],head[N],c[N];
int n,ml,md;
struct Edge{
int u,v,w,next;
}e[M<<];
int tot;
void adde(int u,int v,int w){
e[tot].u=u;e[tot].v=v;e[tot].w=w;e[tot].next=head[u];head[u]=tot++;
}
ll spfa(int s){
queue <int> q;
for(int i=;i<=n;i++) d[i]=INF;
q.push(s);vis[s]=;d[]=;c[]=;
while(!q.empty()){
int u=q.front();q.pop();vis[u]=;
if(c[u]>n) return -;
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].v;
if(d[v]>=d[u]+e[i].w){
d[v]=d[u]+e[i].w;
if(!vis[v]){
vis[v]=;
q.push(v);
c[v]++;
}
}
}
}
return d[n];
}
int main(){
cin>>n>>ml>>md;
memset(head,-,sizeof(head));
for(int i=;i<=ml;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
adde(u,v,w);
}
for(int i=;i<=md;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
adde(v,u,-w);
}
ll flag = spfa();
if(flag==INF){
cout<<-;
return ;
}
else if(flag==-) cout<<-;
else cout<<d[n];
return ;
}

POJ3169:Layout(差分约束)的更多相关文章

  1. POJ-3169 Layout (差分约束+SPFA)

    POJ-3169 Layout:http://poj.org/problem?id=3169 参考:https://blog.csdn.net/islittlehappy/article/detail ...

  2. POJ3169:Layout(差分约束)

    http://poj.org/problem?id=3169 题意: 一堆牛在一条直线上按编号站队,在同一位置可以有多头牛并列站在一起,但编号小的牛所占的位置不能超过编号大的牛所占的位置,这里用d[i ...

  3. POJ3169 Layout(差分约束系统)

    POJ3169 Layout 题意: n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有ml组(u, v, w)的约束关系,表示牛 ...

  4. POJ 3169 Layout(差分约束+链式前向星+SPFA)

    描述 Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 ...

  5. POJ 3169 Layout (差分约束)

    题意:给定一些母牛,要求一个排列,有的母牛距离不能超过w,有的距离不能小于w,问你第一个和第n个最远距离是多少. 析:以前只是听说过个算法,从来没用过,差分约束. 对于第 i 个母牛和第 i+1 个, ...

  6. poj Layout 差分约束+SPFA

    题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...

  7. poj 3169 Layout 差分约束模板题

    Layout Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6415   Accepted: 3098 Descriptio ...

  8. POJ 3169 Layout(差分约束啊)

    题目链接:http://poj.org/problem? id=3169 Description Like everyone else, cows like to stand close to the ...

  9. POJ 3169 Layout(差分约束 线性差分约束)

    题意: 有N头牛, 有以下关系: (1)A牛与B牛相距不能大于k (2)A牛与B牛相距不能小于k (3)第i+1头牛必须在第i头牛前面 给出若干对关系(1),(2) 求出第N头牛与第一头牛的最长可能距 ...

  10. Bellman-Ford算法:POJ No.3169 Layout 差分约束

    #define _CRT_SECURE_NO_WARNINGS /* 4 2 1 1 3 10 2 4 20 2 3 3 */ #include <iostream> #include & ...

随机推荐

  1. clear()、sync()、ignore()

    #include <iostream> using namespace std; int main() { int a; cin>>a; cout<<cin.rds ...

  2. POJ 3210 : Coins

    参考:https://blog.csdn.net/u010885899/article/details/46636523 http://kqwd.blog.163.com/blog/static/41 ...

  3. python2.7练习小例子(二十一)

        21):1.题目:两个乒乓球队进行比赛,各出三人.甲队为a,b,c三人,乙队为x,y,z三人.已抽签决定比赛名单.有人向队员打听比赛的名单.a说他不和x比,c说他不和x,z比,请编程序找出三队 ...

  4. 集成activiti到现有项目中

    1.在lib中添加相关的jar包 2.找到一个activiti.cfg.xml,若是想用现有的数据库需要配置 <?xml version="1.0" encoding=&qu ...

  5. 读取Excel错误,未在本地计算机上注册 oledb.4.0

          以前写的一个读取Excel的程序,现在在另外一台机器上运行,竟然报错说"未在本地计算机上注册 oledb.4.0"       最后才知道,原来是因为现在运行的那台电脑 ...

  6. Bug是一种财富-------研发同学的错题集、测试同学的遗漏用例集

    此文已由作者王晓明授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 各位看官,可能看到标题的你一定认为这是一篇涉嫌"炒作"的文章,亦或是为了吸引眼球而起的标 ...

  7. Java测试工具和框架

    个人目前只接触过JUnit以及Powermock,后续会关注更多有关测试这方面的东西 8个超实用的Java测试工具和框架_开发/数据库_IT专家网 http://database.ctocio.com ...

  8. 国际电话区号SQL

    CREATE TABLE `phone_prefix` ( `id` int(11) unsigned NOT NULL AUTO_INCREMENT, `country` varchar(30) N ...

  9. C++学习010-将某个地址转化为指针

    如果需要将某个具体的地址转化为指针,可以直接使用类型那个转换来是实现. 实例如下 int main() { void* pData = (void*)(0x004001); std::cout < ...

  10. Web负载均衡技术

    Web负载均衡(Load Balancing),简单地说就是给我们的服务器集群分配“工作任务”,而采用恰当的分配方式,对于保护处于后端的Web服务器来说,非常重要. 负载均衡的策略有很多,我们从简单的 ...